Material constraints that transformed civilizations
Busscher cites the substitution of iron for bronze as a classic example. When tin for making bronze ran short, metallurgists were forced to find alternatives, accelerating advances in smelting to separate iron metal from surrounding ores. Iron, a superior metal, ultimately supplanted bronze as production costs declined and supplies increased. A modern-day equivalent to the discovery of iron is the discovery of graphene, a one-atom-thick sheet of carbon atoms.
Graphene is stronger yet lighter than steel. In addition to graphene’s strength, its ability to efficiently conduct electricity and heat makes it suitable for a wide range of commercial applications, from electric batteries needed to power cars, heat pumps and industrial generators to energy-efficient lighting in homes and buildings. Raw materials like graphene engineered in labs could replace the use of natural resources pulled from the Earth.

Pieter Busscher CFA
Senior Portfolio Manager
“
Constraints have always been catalysts for catapulting innovation.
Innovations in processing that spawned revolutions
Nearly three millennia after the discovery of iron, constraints of another sort resulted in one of the most important innovations in history – the steam engine – ushering in the first Industrial Revolution. What mechanical power was for 18th century manufacturing, computing power is for the 21st century. With the rise of big data, automation and robotics, manufacturing has entered its fourth Industrial Revolution and its impact will be equally transformative across industry sectors.
IoT applied in the factory is revolutionizing production lines. Busscher says computer-aided software, factory automation and robotics are enhancing design, prototyping, and production phases. As a result, fewer materials are wasted pre-production, in-production and even post-production.

Pieter Busscher CFA
Senior Portfolio Manager
“
Impact innovations describe technologies that reduce the negative impacts of industrialization.
Impact constraints – a 21st century conundrum
Traditionally, constraints have been focused on resource supplies and manufacturing productivity. But uniquely 21st century constraints are now emerging as centuries of environmental ignorance and abuse now require retribution and reprisal. Alongside pressure to scale up production, manufacturers will be pressed to scale down emissions, pollution and excess waste, the byproducts created in the process. Busscher uses the term ‘impact innovations’ to describe technologies that reduce the negative impacts of industrialization. He says companies in this space are helping reduce greenhouse gas emissions, recycle waste and using biomass to create materials and products that are easy on the environment.
Busscher emphasizes that while recycling has been practiced for decades, smarter recycling technologies are emerging to match the growing complexity and volume of society’s waste streams. He says electronic waste (e-waste) is already the fastest-growing waste category and much of it is heavily laden with base, precious and rare-earth metals needed to power the electronic devices of a digital economy as well as in the magnets and batteries needed for electrification and green power generation. Similarly, the volume and diversity of plastics has also increased as have recycling methods to retrieve reusable compounds.
Finally, advances in biomass and bio-based substances are helping reduce the need for fossil-fuel ingredients in many materials on which society depends. From large-scale bio-concrete and steel-strength timber to small-scale bioplastics and bio-adhesives, Busscher adds that biomaterials parallel the functional performance of their fossil-based counterparts but are less energy intensive when produce and more environmentally friendly when scrapped.

Pieter Busscher CFA
Senior Portfolio Manager
“
Smarter recycling technologies are emerging to match the growing complexity and volume of society’s waste streams.
Decarbonization pressures – squeezing margins, igniting innovation
The climate warnings of scientists and conservationists are now impossible to ignore and carbon emissions have become public enemy No. 1. Decarbonization is now a prioritized target within national economies as well as on geopolitical agendas. At least half of the G20 have committed to net zero emissions by 2050, and a critical pillar in many national climate strategies is putting a price on carbon via taxes or carbon trading schemes (CTS).
Figure 1 | Rising carbon prices will increase production costs

Source: BloombergNEF, Bloomberg Green
The graphic illustrates historical (black line) and projected (blue) carbon prices within the EU carbon market (the world’s largest). Rising carbon prices is becoming an integral factor in company production costs and should induce companies to switch to cleaner and more resource efficient technologies.
As carbon prices increase, so too will the cost of production for heavy-emitting industries intensifying incentives to reduce their total emissions. To help stimulate R&D and accelerate time to market, the world’s biggest markets (the US, China, and the EU) have announced financial support over the next several decades to underwrite domestic investments in clean tech and infrastructure. As production ramps up and economies of scale are reached, the costs of low- and zero-carbon technologies will fall. According to the UN, by 2030, zero-carbon technologies could be competitive in sectors representing over 70% of global emissions.
Busscher stresses that the companies in which his fund invests are creating solutions that not only make manufacturing leaner but enable industries to shift to operating environments where pollution pricing and net-zero emissions are the new norms.
クレジットに関する最新の「インサイト」を読む
Receive our Robeco newsletter and be the first to read the latest insights and build the greenest portfolio.
Smart Materials investment clusters
The strategy invests in innovation diversified across the manufacturing value chain. Within the strategy, innovation is concentrated into four key investment areas:

重要事項
当資料は情報提供を目的として、Robeco Institutional Asset Management B.V.が作成した英文資料、もしくはその英文資料をロベコ・ジャパン株式会社が翻訳したものです。資料中の個別の金融商品の売買の勧誘や推奨等を目的とするものではありません。記載された情報は十分信頼できるものであると考えておりますが、その正確性、完全性を保証するものではありません。意見や見通しはあくまで作成日における弊社の判断に基づくものであり、今後予告なしに変更されることがあります。運用状況、市場動向、意見等は、過去の一時点あるいは過去の一定期間についてのものであり、過去の実績は将来の運用成果を保証または示唆するものではありません。また、記載された投資方針・戦略等は全ての投資家の皆様に適合するとは限りません。当資料は法律、税務、会計面での助言の提供を意図するものではありません。 ご契約に際しては、必要に応じ専門家にご相談の上、最終的なご判断はお客様ご自身でなさるようお願い致します。 運用を行う資産の評価額は、組入有価証券等の価格、金融市場の相場や金利等の変動、及び組入有価証券の発行体の財務状況による信用力等の影響を受けて変動します。また、外貨建資産に投資する場合は為替変動の影響も受けます。運用によって生じた損益は、全て投資家の皆様に帰属します。したがって投資元本や一定の運用成果が保証されているものではなく、投資元本を上回る損失を被ることがあります。弊社が行う金融商品取引業に係る手数料または報酬は、締結される契約の種類や契約資産額により異なるため、当資料において記載せず別途ご提示させて頂く場合があります。具体的な手数料または報酬の金額・計算方法につきましては弊社担当者へお問合せください。 当資料及び記載されている情報、商品に関する権利は弊社に帰属します。したがって、弊社の書面による同意なくしてその全部もしくは一部を複製またはその他の方法で配布することはご遠慮ください。 商号等: ロベコ・ジャパン株式会社 金融商品取引業者 関東財務局長(金商)第2780号 加入協会: 一般社団法人 日本投資顧問業協会