Robeco logo

Disclaimer

Confermo di essere un cliente professionale

Le informazioni e le opinioni contenute in questa sezione del Sito cui sta accedendo sono destinate esclusivamente a Clienti Professionali come definiti dal Regolamento Consob n. 16190 del 29 ottobre 2007 (articolo 26 e Allegato 3) e dalla Direttiva CE n. 2004/39 (Allegato II), e sono concepite ad uso esclusivo di tali categorie di soggetti. Ne è vietata la divulgazione, anche solo parziale.

Al fine di accedere a tale sezione riservata, si prega di confermare di essere un Cliente Professionale, declinando Robeco qualsivoglia responsabilità in caso di accesso effettuato da una persona che non sia un cliente professionale.

In ogni caso, le informazioni e le opinioni ivi contenute non costituiscono un'offerta o una sollecitazione all'investimento e non costituiscono una raccomandazione o consiglio, anche di carattere fiscale, o un'offerta, finalizzate all'investimento, e non devono in alcun caso essere interpretate come tali.

Prima di ogni investimento, per una descrizione dettagliata delle caratteristiche, dei rischi e degli oneri connessi, si raccomanda di esaminare il Prospetto, i KIIDs delle classi autorizzate per la commercializzazione in Italia, la relazione annuale o semestrale e lo Statuto, disponibili sul presente Sito o presso i collocatori.
L’investimento in prodotti finanziari è soggetto a fluttuazioni, con conseguente variazione al rialzo o al ribasso dei prezzi, ed è possibile che non si riesca a recuperare l'importo originariamente investito.

Rifiuto

17-07-2025 · Visione

From black box to glass box: Understanding and attributing machine learning models

Machine learning techniques are increasingly important in quantitative investing, thanks to their ability to capture complex financial data dynamics and improve return and risk estimates. But the resulting higher complexity means such models are sometimes perceived as being ‘black boxes’. In a new whitepaper, Robeco researchers provide insights into the tools available to understand and interpret machine learning models.

Download the whitepaper


    Relatori

  • Vera Roersma - Researcher

    Vera Roersma

    Researcher

  • Tobias Hoogteijling - Researcher

    Tobias Hoogteijling

    Researcher

  • Matthias Hanauer - Researcher

    Matthias Hanauer

    Researcher

Sommario

  1. Machine learning (ML) models add value in stock selection strategies

  2. Rationalizing ML algorithms is vital for their successful use and clients’ trust

  3. We apply proprietary techniques to understand the drivers of ML predictions and to attribute the performance of ML strategies

Understanding machine learning

ML techniques, including algorithms such as neural networks and gradient-boosted regression trees, can help quant investors understand and exploit complex financial data dynamics. These algorithms capture nonlinear relationships and interactions in a flexible way and can improve return and risk estimates, but can also add to a sense of complexity and opaqueness.

Prediction and performance

In our new whitepaper, we aim to provide insights into the tools we use to understand and interpret ML models. It’s essential to grasp the relationship between the input features and the resulting ML predictions on one hand, and to understand the ML-based performance of associated investment strategies on the other. The enhanced transparency and interpretation from these tools contribute to the successful use of machine learning techniques in practice, and over the past years, a wide variety of ML signals have been added to Robeco’s quant strategies. Done properly, machine learning approaches to investment need not constitute an opaque black box, but a clearly understood ‘glass box’.

Scarica la pubblicazione

loader

Scoprite il futuro dell'IA negli investimenti

Scoprite come l'IA sta plasmando il panorama degli investimenti di domani: imparate le basi o approfondite con il nostro corso sull'IA.