Robeco logo

免責聲明

1. 一般事項

請細閱以下資料。

此網站由Robeco Hong Kong Limited(「荷寶」)擬備及刊發,荷寶是獲香港證券及期貨事務監察委員會發牌從事第1類(證券交易)、第4類(就證券提供意見)及第9類(資產管理)受規管活動的企業。荷寶不持有客戶資產,並受到發牌條件所規限。荷寶在擴展至零售業務之前,必須先得到證監會的批准。本網頁未經證券及期貨事務監察委員會或香港的任何監管當局審閱。

2. 風險披露聲明

Robeco Capital Growth Funds以其特定的投資政策或其他特徵作識別,請小心閱讀有關Robeco Capital Growth Funds的風險:

  • 部份基金可涉及投資、市場、股票投資、流動性、交易對手、證券借貸及外幣風險及小型及/或中型公司的相關風險。

  • 部份基金所涉及投資於新興市場的風險包括政治、經濟、法律、規管、市場、結算、執行交易、交易對手及貨幣風險。

  • 部份基金可透過合格境外機構投資者("QFII")及/或 人民幣合格境外機構投資者 ("RQFII")及/或 滬港通計劃直接投資於中國A股,當中涉及額外的結算、規管、營運、交易對手及流動性風險。

  • 就分派股息類別,部份基金可能從資本中作出股息分派。股息分派若直接從資本中撥付,這代表投資者獲付還或提取原有投資本金的部份金額或原有投資應佔的任何資本收益,該等分派可能導致基金的每股資產淨值即時減少。

  • 部份基金投資可能集中在單一地區/單一國家/相同行業及/或相同主題營運。 因此,基金的價值可能會較為波動。

  • 部份基金使用的任何量化技巧可能無效,可能對基金的價值構成不利影響。

  • 除了投資、市場、流動性、交易對手、證券借貸、(反向)回購協議及外幣風險,部份基金可涉及定息收入投資有關的風險包括信貨風險、利率風險、可換股債券的風險、資產抵押證券的的風險、投資於非投資級別或不獲評級證券的風險及投資於未達投資級別主權證券的風險。

  • 部份基金可大量運用金融衍生工具。荷寶環球消費新趨勢股票可為對沖目的及為有效投資組合管理而運用金融衍生工具。運用金融衍生工具可涉及較高的交易對手、流通性及估值的風險。在不利的情況下,部份基金可能會因為使用金融衍生工具而承受重大虧損(甚至損失基金資產的全部)。

  • 荷寶歐洲高收益債券可涉及投資歐元區的風險。

  • 投資者在Robeco Capital Growth Funds的投資有可能大幅虧損。投資者應該參閱Robeco Capital Growth Funds之銷售文件內的資料﹙包括潛在風險﹚,而不應只根據這文件內的資料而作出投資。


3. 當地的法律及銷售限制

此網站僅供“專業投資者”進接(其定義根據香港法律《證券及期貨條例》(第571章)和/或《證券及期貨(專業投資者)規則》(第571D章)所載)。此網站並非以在禁止刊發或提供此網站(基於該人士的國籍、居住地或其他原因)的任何司法管轄區內的任何人士為對象。受該等禁例限制的人士或並非上述訂明的人士不得登入此網站。登入此網站的人士需注意,他們有責任遵守所有當地法例及法規。一經登入此網站及其任何網頁,即確認閣下已同意並理解以下使用條款及法律資料。若閣下不同意以下條款及條件,不得登入此網站及其任何網頁。

此網站所載的資料僅供資料參考用途。

在此網站發表的任何資料或意見,概不構成購買、出售或銷售任何投資,參與任何其他交易或提供任何投資建議或服務的招攬、要約或建議。此網站所載的資料並不構成投資意見或建議,擬備時並無考慮可能取得此網站的任何特定人士的個別目標、財務狀況或需要。投資於荷寶產品前,必須先細閱相關的法律文件,例如管理法規、基金章程、最新的年度及半年度報告,所有該等文件可於www.robeco.com/hk/zh免費下載,亦可向荷寶於香港的辦事處免費索取。

4. 使用此網站

有關資料建基於特定時間適用的若干假設、資料及條件,可隨時更改,毋需另行通知。儘管荷寶旨在提供準確、完整及最新的資料,並獲取自相信為可靠的資料來源,但概不就該等資料的準確性或完整性作出明示或暗示的保證或聲明。

登入此網站的人士需為其資料的選擇和使用負責。

5. 投資表現

概不保證將可達到任何投資產品的投資目標。並不就任何投資產品的表現或投資回報作出陳述或承諾。閣下的投資價值可能反覆波動。荷寶投資產品的資產價值可能亦會因投資政策及/或金融市場的發展而反覆波動。過去所得的業績並不保證未來回報。此網站所載的往績、預估或預測不應被視為未來表現的指示或保證,概不就未來表現作出任何明示或暗示的陳述或保證。基金的表現數據以月底的交易價格為基礎,並以總回報基礎及股息再作投資計算。對比基準的回報數據顯示未計管理及/或表現費前的投資管理業績;基金回報包括股息再作投資,並以基準估值時的價格及匯率計算的資產淨值為基礎。

投資涉及風險。往績並非未來表現的指引。準投資者在作出任何投資決定前,應細閱相關發售文件所載的條款及條件,特別是投資政策及風險因素。投資者應確保其完全明白與基金相關的風險,並應考慮其投資目標及風險承受程度。投資者應注意,基金股份的價格及收益(如有)可能反覆波動,並可能在短時間內大幅變動,投資者或無法取回其投資於基金的金額。若有任何疑問,請諮詢獨立財務及有關專家的意見。

6. 第三者網站

本網站含有來自第三方的資料或第三方經營的網站連結,而其中部分該等公司與荷寶沒有任何聯繫。跟隨連結登入任何其他此網站以外的網頁或第三方網站的風險,應由跟隨該連結的人士自行承擔。荷寶並無審閱此網站所連結或提述的任何網站,概不就該等網站的內容或所提供的產品、服務或其他項目作出推許或負上任何責任。荷寶概不就使用或依賴第三方網站所載的資料而導致的任何虧損或損毀負上法侓責任,包括(但不限於)任何虧損或利益或任何其他直接或間接的損毀。 此網站以外的網頁或第三方網站皆旨在作參考之用。

7. 責任限制

荷寶及(潛在的)其他網站資料供應商概不就此網站內容或其所載的資料或建議負責,而該等內容、資料或建議可予更改,毋需另行通知。

荷寶並無責任確保及保證此網站的功能將不受干擾或並無失誤。荷寶概不就有關荷寶(交易)服務電郵訊息的後果承擔任何責任,該等電郵訊息可能無法接收或發出、損毀、不正確接收或發出或並無準時接收或發出。

荷寶亦不就因登入及使用此網站而可能導致的任何虧損或損毀負責。

8. 知識產權

所有版權、專利、知識產權和其他財產,以及有關此網站資料的授權均由荷寶持有及獲取。該等權利不會轉授予查閱有關資料的人士。

9. 私隠

荷寶保證將會根據現行的資料保障法例,以保密方式處理登入此網站的人士的數據。除非荷寶需按法律責任行事,否則在未經登入此網站的人士許可,不會向第三方提供該等數據。 請於我們的私隱及Cookie政策 中查找更多詳情。

10. 適用法律

此網站受香港法律監管及據此解釋。因此網站導致或有關此網站的所有爭議應交由香港法庭作出專有裁決。

如果您已閱讀並理解本頁並同意上述免責聲明以及同意荷寶收集和使用您的個人資料,用於私隱及Cookie政策 所列的收集和使用個人資料的目的(包括用於直接推廣荷寶的產品或服務),請點擊“我同意”按鈕。否則,請點擊“我不同意”離開本網站。


我不同意

20-07-2023 · 市場觀點

Next-gen quant evolution: using new signals in existing strategies

How has quant investing changed in response to new technological developments, and how have Robeco’s strategies developed in response? We invited Wilma de Groot, Head of Core Quant Equities and Head of the Quant Equity Portfolio Management team at Robeco, to share the company's evolution and perspective on recent advancements in the field.

    作者

  • Wilma de Groot - 核心量化股票策略總監,量化股票投資組合管理總監及量化股票副總監

    Wilma de Groot

    核心量化股票策略總監,量化股票投資組合管理總監及量化股票副總監

As technological advancements open new horizons in the field, could you shed some light on how and when we began to integrate alternative signals into our strategies? How extensively has next-gen quant already been implemented across our strategies?

“Our principal models encompass well-known factors like value, momentum, and quality, which we categorize as return factors, as well as low risk for the conservative strategy. Having consistently conducted research on how we can enhance these factors, we started incorporating alternative signals in 2009, through the application of our timing indicator in our enhanced index strategies. This indicator, generally based on faster moving and innovative signals, helps us determine the optimal times to buy and sell stocks after our main model has identified attractive stocks.”

“Initially, we assigned a 10% weight to this timing signal and gradually enhanced our strategy with additional components. These elements provide significant potential and diversification benefits. For instance, our timing indicator, which has a low correlation with traditional factors, can reduce drawdowns and improve risk-return ratios. However, because they move fast these signals can lead to high turnover and trading costs if we give them too much weight.”

“To maximize net return, we've worked to refine the timing indicator and minimize trading costs. This allowed us to increase the indicator's weight to 20% in 2017 and currently, the weight is 25%. By the end of last year, we launched Quantum, our standalone next-gen strategy based on research and a model which has its foundation in 2009.”
“In terms of very new signals, one recent development is the use of machine learning. Initially, this was to predict risk, specifically distress risk, which means identifying which stocks are likely to fall. Now, machine learning is incredibly efficient at this, especially when you feed it a diverse set of risk-related variables.”

“You can also apply machine learning to exploit interaction effects, which is really exciting. Take for example, the short-term reversal effect, where stocks that have declined in the past few weeks tend to bounce back. Machine learning helps us fine-tune these strategies by considering additional dimensions such as liquidity of these stocks.”

“Around 2019, we started using a natural language processing (NLP) signal, to translate news sentiment into scores. It can evaluate the sentiment of the news – positive or negative. We are now expanding the use of NLP to analyze earnings call transcripts and even audio files of earnings calls, to not just analyze the words but also tone and intonation.”

How do you enhance the signals in your strategies to mitigate risks?

“One example involves analyst revisions where analysts revise earnings upward or downward. However, analysts have biases: they tend to prefer large cap, growth stocks. We aim to neutralize this bias, which has helped us lower risk and get better return characteristics in the past.”

“We explore this kind of thing in our academic research. A good example of this is our residual momentum paper, and our value and distress risk paper. The latter is where we take the value premium and demonstrate how to capture it and remove distress risk from the strategy. We use distress risk signals in our active low-risk strategy, Conservative Equities, to help us choose which companies to buy that have a low-risk profile. And we also use it in our return strategies to try to avoid stocks with the highest bankruptcy risk.”

How do you make sure that any new signals that are developed from these data sets are robust?

“While we do have a plethora of data sets at our disposal that are incredibly diverse, not all data sets make the cut. We’re discerning when we select data sets, making sure they are credible and can add value to our strategies, while also exploring new territories of data sets, which could range from patent data to financial blog data.”

“It’s true that the history of many new signals is not that long, but it’s often sufficient for what we need. For example, when we first started examining emerging markets, in 2006, the data wasn’t as comprehensive or high quality as what we had for developed markets. But it was good enough to start research, and as we dove in, we learned more, and were able to improve the data quality over time.”

“To make sure the new signals really are robust, we usually get our inspiration from academic literature, primarily focusing on the US. We then scrutinize these signals in other regions. For instance, even if emerging markets have less data, Europe might provide us with a strong out-of-sample test. We also evaluate how these signals perform under different market conditions. For a given period, even if it's short, we analyze how the signal behaved during various market phases – like a bull market, a bear market, or times of high volatility. Understanding how these signals react in various scenarios is vital.”

“Another exciting aspect is the ‘spanning alpha test’. Here, we investigate if the new data sets offer something beyond what we already have. We don’t want to reinvent the wheel. Sometimes a new variable might just be replicating existing information in a fancier package. In that case, then we’ll probably decide not to go on with it. But sometimes we do discover that a new variable is unique and valuable. That’s a tough test to pass, given that our existing models are pretty solid.”

What are some of the new signals next-gen quant uses that are linked to sustainability?

“Two signals we’ve started using recently are employee engagement and resource efficiency as sustainability elements. Employee engagement is a really interesting factor. So, employees can rate their companies on platforms like Glassdoor, where they express their satisfaction or dissatisfaction. Companies with higher ratings usually have a motivated and efficient workforce. We found that happy employees correlate with higher sales compared to labor costs, and interestingly, these companies tend to have better future stock returns. This is an alpha signal tied to the ‘social’ part of ESG: through employee satisfaction.”

“Resource efficiency, on the other hand, is more of an ‘E’ factor in ESG. Imagine airlines with very fuel-efficient planes. Obviously they’re going to have lower costs and use fewer resources, which should give them a competitive edge. We thought this would probably apply to other resource-heavy sectors, such as energy, utilities, automobiles, and industrials. One way to measure this is by looking at the amount of carbon emissions (as a proxy for resources used) in comparison to the sales of a firm. When we analyzed it we found that resource-efficient companies (with low emissions compared to sales) actually do tend to have higher future stock returns, and they also have lower carbon emissions, making it an sustainability win.”

探索量化價值

訂閱我們的電子報,獲取尖端的量化策略和見解。

探索量化的奧秘

How challenging is it to convince clients to join this quant evolution journey?

“We actively involve our clients in our process and methodologies, so they also contribute to our core models, and we share our research and advancements extensively with them. And we’re transparent about our process and the elements we consider – so they are part of the journey.”

With all these developments taking place, does it make it harder to stay ahead of the pack?

“We think our longevity here can give us an advantage, because we’ve got this experience in conducting rigorous research and we aim to strike an optimal balance between established factors and innovative data sets, blending traditional data with emerging signals.”

“Turnover and trading costs, which are often either overlooked or seen as set in stone in academic literature, are something we consider carefully. With slow moving strategies, the impact is low, but especially with these newer and faster moving signals, that’s naïve at best and a waste at worst.”

“You need to think about a smart rebalancing strategy; a smart trading strategy. With Weili Zhou, our Head of Quant Equity, we've written papers on implementing strategies that account for trading costs in a smart way and can be executed net of trading costs.”

And finally, how do we hope to maintain our position as innovators going forward?

“We don't and won’t adopt new alternative datasets without thorough investigation. And we don't incorporate signals merely to look innovative; we do it because we believe they add value. We aim to generate diversified alpha – concentrating on multiple signals in addition to the well-known ones. If a particular approach aids diversification, enhances alpha, or improves the risk profile, we're keen to adopt it. But, we’ll always seek the right balance and consider trading costs seriously, as they are a critical aspect of our strategy.”

A selection of alternative signals

  • Short term reversal component: This involves looking at stocks that have shown a short-term reversal in their performance.

  • Liquidity characteristics: We also look at stocks whose liquidity profile has improved, which we view as a positive sign.

  • Information from the lending market: We use information from the short lending market, considering a high level of shorting on a stock as a negative sign.

  • Web script data (job vacancies): We monitor the number of job vacancies at firms, viewing an increase as an expectation for future growth.

  • Sustainability information: Since 2010, we’ve included sustainability information as part of our Quality theme.

  • Information from the credit market: We use the performance of a company's bonds to predict future stock returns, and vice versa.

  • News sentiment: We analyze the type of news coming out about a company, viewing more positive news as a good sign for future stock returns.

  • Machine learning techniques to predict distress risk: We use machine learning techniques to predict the risk of a company going bankrupt.


While the specifics of each signal and how it's used will vary, the overall goal is to improve the risk-return profile of the portfolio.

Important information

The contents of this document have not been reviewed by the Securities and Futures Commission ("SFC") in Hong Kong. If you are in any doubt about any of the contents of this document, you should obtain independent professional advice. This document has been distributed by Robeco Hong Kong Limited (‘Robeco’). Robeco is regulated by the SFC in Hong Kong. This document has been prepared on a confidential basis solely for the recipient and is for information purposes only. Any reproduction or distribution of this documentation, in whole or in part, or the disclosure of its contents, without the prior written consent of Robeco, is prohibited. By accepting this documentation, the recipient agrees to the foregoing This document is intended to provide the reader with information on Robeco’s specific capabilities, but does not constitute a recommendation to buy or sell certain securities or investment products. Investment decisions should only be based on the relevant prospectus and on thorough financial, fiscal and legal advice. Please refer to the relevant offering documents for details including the risk factors before making any investment decisions. The contents of this document are based upon sources of information believed to be reliable. This document is not intended for distribution to or use by any person or entity in any jurisdiction or country where such distribution or use would be contrary to local law or regulation. Investment Involves risks. Historical returns are provided for illustrative purposes only and do not necessarily reflect Robeco’s expectations for the future. The value of your investments may fluctuate. Past performance is no indication of current or future performance.