01-06-2022 · 市場觀點

Quality: the underappreciation of well-managed businesses

Persistent human errors when forming future earnings expectations for companies give rise to the Quality premium. As the newer kid on the factor block, Quality has become established on the back of robust evidence and its resilience post publication.


  • Lusanele Magwa - Quant Investment Specialist/CPM

    Lusanele Magwa

    Quant Investment Specialist/CPM

  • Jeroen Hagens - Investment Specialist

    Jeroen Hagens

    Investment Specialist

  • Lejda Bargjo - Client Portfolio Manager

    Lejda Bargjo

    Client Portfolio Manager

The quality factor encompasses several firm characteristics related to firm profitability, earnings quality, investment policy and corporate governance. Various academic papers demonstrate that high quality companies tend to generate significant outperformance relative to the market that cannot be explained by other common factors.

This result may seem counterintuitive at first. If the high quality of fundamentals is deemed as a desirable feature when selecting stocks, then they would command a higher price and, therefore, result in lower expected returns. However, numerous studies reveal why high quality firms deliver strong returns in the absence of elevated (materialized) risks.

Quality has become an established factor in recent decades

For instance, a seminal paper1 published in 1996 illustrated that stock prices failed to fully reflect the information contained in accruals and cash flows until it had an impact on future earnings. It therefore deduced that companies with conservative accruals management policies (low accruals) tended to outperform the market.

In another study2 in 2008, the authors found evidence that share issuance data – public offerings, share buybacks, stock mergers – exhibited an ability to predict stock returns. Meanwhile, asset growth – related to a firm’s investment and financing activities – was also shown to have an effect on predicting future stock returns, according to a research paper3 published in 2008.

In 2013, an academic paper4 outlined the association between high gross profitability and strong future returns, notwithstanding the generally poor valuation characteristics (for example, elevated price-to-book ratios) exhibited by highly profitable companies. In fact, the researcher argued that profitability and value are two sides of the same coin.

But it was not until 2015 that the quality factor arguably saw the biggest increase in interest. This coincided with the inclusion of quality characteristics (investment and profitability) into the Fama-French five-factor model.5 This ‘stamp of approval’ from the renowned academics spurred a series of research papers that either challenged the robustness of the quality factor, or tried to define what it entailed and how best to implement it in live portfolios.

In a publication6 released in 2018, for example, the authors demonstrated how a quality factor – based on a composite of measures designed to capture the growth, profitability and safety characteristics of firms – generated significant risk-adjusted returns in the US and globally across 24 countries.

Risk-based theories fall short in their explanations of the Quality premium

In our view, the academic research that argues in favor of the quality premium being driven by risk is unconvincing. Most notably, the seminal Fama and French paper5 failed to strongly link the investment and profitability factors to risk. The paper represented a clear departure from the findings in their preceding three-factor model,7 where they argued that the factors stemmed from exposure to distress risk. Not only is it difficult to associate quality with distress risk, but multiple studies8 have also shown that the relationship between distress risk and returns is actually negative.

In a Robeco research paper,9 the authors outlined the shortcomings of the Fama-French five-factor model. One of the issues pertained to a number of robustness concerns regarding the two new factors. In particular, it was surprising that the investment factor was defined as asset growth, which Fama and French had considered to be a ‘less robust’ phenomenon in their earlier work.10

The five-factor model also failed to explain a number of variables that are closely related to investment and profitability. Moreover, it was unclear whether the two new factors were effective before 1963, which has since been demonstrated in another publication11 that shows evidence of the quality factor dating back to the 1940s.

Another concern revolved around the economic rationale for the model. Fama and French did not even attempt to explain that investment and profitability are plausible risk factors. Instead, the two factors were included as they proxy expected returns based on a rewritten dividend discount model.

In another publication,6 the authors showed that high quality stocks appeared to be safer and not riskier than their low quality peers during distressed market conditions. But due to their defensive characteristics, concerns were raised that the quality premium could actually be the low-risk premium in disguise. However, a Robeco paper12 highlighted that quality and low-risk factors are distinct.

Furthermore, another Robeco study13 illustrated that the similarity between the low-risk and quality factors is mainly found in their short positions as poor quality stocks also tend to be very volatile. But when observed from a long-only perspective, the two factors are quite distinct.


Receive our Robeco newsletter and be the first to read the latest insights and build the greenest portfolio.


Quality anomaly is driven by behavioral biases

In 2012, Robeco launched a project that was aimed at evaluating why quality investing works and how it could be implemented efficiently in portfolios. The key insights were subsequently published in an academic paper.14 The researchers showed that the quality factor worked across global equity and credit markets.

However, they noted that not all quality definitions were created equal. In terms of their findings, they observed that the quality measures documented in the academic literature – gross profitability, operating accruals and investments – were more robust measures than more commonly used metrics in the industry such as earnings variability, leverage, margins or return on equity growth.

The study dived deeper into the reasons why this was the case. In particular, the researchers noted that the quality measures that were associated with high future returns worked well as they could forecast high future earnings. They found that this information was not properly discounted in current market prices. In other words, market participants, on average, underreacted to information embedded in past profitability, operating accruals and investments.

Figure 1 depicts the relationship between returns and earnings forecasting power of the various quality metrics. As indicated in the top-right corner, the accruals, gross profits and investments measures do well in predicting future earnings and returns. Meanwhile, the results for the other metrics are mixed.

Figure 1 | How different quality measures stack up in predicting future earnings and returns

Figure 1 | How different quality measures stack up in predicting future earnings and returns

Source: Robeco and Kyosev, Hanauer, Huij and Lansdorp (2020). “Does Earnings Growth Drive the Quality Premium?” Journal of Banking & Finance. The graphs show returns vs earnings predictability of long/short portfolios sorted on different Quality measures. The sample period is from January 1986 to December 2015 for global equity markets.

In another research paper,15 four authors provided further proof that behavioral biases drive the quality factor. They used analyst forecast data to show that financial analysts are, on average, too pessimistic regarding the future profits of highly profitable companies. In their view, this gives rise to the profitability anomaly, which they also find to be particularly strong for firms with persistent profits.

Another recent study16 also presented evidence in support of a behavioral explanation for the profitability factor. It outlined that investors tend to assign similar price-to-earnings multiples to stocks with similar expected growth. This simplistic approach leads profitable companies to outperform in the future when less profitable firms are forced to issue additional equity to fund their growth. In turn, this dilutes the claims of existing investors to future cash flows.


All in all, we believe that behavioral biases linked to persistent human errors when forming future earnings expectations for companies give rise to the quality factor. This premium is consistent over time and across markets, while it is also distinguishable from other factor premiums.

In the previous articles, we touched on low volatility, momentum and value.


本文由荷宝海外投资基金管理(上海)有限公司(“荷宝上海”)编制, 本文内容仅供参考, 并不构成荷宝上海对任何人的购买或出售任何产品的建议、专业意见、要约、招揽或邀请。本文不应被视为对购买或出售任何投资产品的推荐或采用任何投资策略的建议。本文中的任何内容不得被视为有关法律、税务或投资方面的咨询, 也不表示任何投资或策略适合您的个人情况, 或以其他方式构成对您个人的推荐。 本文中所包含的信息和/或分析系根据荷宝上海所认为的可信渠道而获得的信息准备而成。荷宝上海不就其准确性、正确性、实用性或完整性作出任何陈述, 也不对因使用本文中的信息和/或分析而造成的损失承担任何责任。荷宝上海或其他任何关联机构及其董事、高级管理人员、员工均不对任何人因其依据本文所含信息而造成的任何直接或间接的损失或损害或任何其他后果承担责任或义务。 本文包含一些有关于未来业务、目标、管理纪律或其他方面的前瞻性陈述与预测, 这些陈述含有假设、风险和不确定性, 且是建立在截止到本文编写之日已有的信息之上。基于此, 我们不能保证这些前瞻性情况都会发生, 实际情况可能会与本文中的陈述具有一定的差别。我们不能保证本文中的统计信息在任何特定条件下都是准确、适当和完整的, 亦不能保证这些统计信息以及据以得出这些信息的假设能够反映荷宝上海可能遇到的市场条件或未来表现。本文中的信息是基于当前的市场情况, 这很有可能因随后的市场事件或其他原因而发生变化, 本文内容可能因此未反映最新情况,荷宝上海不负责更新本文, 或对本文中不准确或遗漏之信息进行纠正。