japanja
Lessons from our 2018 ‘Super Quant’ internships

Lessons from our 2018 ‘Super Quant’ internships

05-12-2018 | リサーチ

Top-notch investment strategies require top-notch research. The Robeco ‘Super Quant’ internship research projects, in areas such as language analysis or survey-based macroeconomic data, are part of this ongoing effort.

  • David Blitz
    David
    Blitz
    Head of Quant Research
  • Martin Martens
    Martin
    Martens
    Researcher

Speed read:

  • Super Quant’ internships produce valuable research
  • In 2018, we looked at links between companies and spillover effects
  • We also analyzed SEC regulatory filings and macro surprise indices

In its effort to keep offering top-notch investment strategies, each year Robeco’s quantitative research department runs several research projects with our ‘Super Quant’ interns, under the supervision of our experienced researchers. Internships typically last for six months and are combined with writing a master’s thesis on the same research topic. For Robeco, these internships represent a unique opportunity to hire students from some of the best universities in finance and econometrics, and to either drill deeper in our existing intellectual property or explore new areas of research. This article describes the key findings of three of these internships in 2018.

クオンツに関する最新の「インサイト」を読む
クオンツに関する最新の「インサイト」を読む
配信登録

Analyzing links between companies

This project looked into the links between companies or industries that are not fully incorporated in the prices of financial assets. The idea was to uncover and exploit a potential indirect momentum effect that spills over to the companies we can invest in. Such an indirect momentum effect could enhance our existing stock and corporate bond selection models.

To check whether an indirect momentum effect could provide valuable information, we used monthly data and regressed individual equity or industry returns on one-month lagged industry returns, using a Lasso (least absolute shrinkage and selection operator) regression method.

We made predictions both at industry level, leading to an industry rotation strategy we called ‘industry to industry’, and at individual equity level, leading to a strategy we called ‘industry to company’. The analysis showed that the ‘industry to company’ signal is stronger than the “industry to industry’ signal.

We analyzed 353,173 filings, which amounted to 20 million pages and 5 billion words

Browsing regulatory filings

This project investigated whether variables derived from the text in annual and quarterly reports may provide useful information for equity and credit investors. To this end, we downloaded all the 10-K and 10-Q files available from the EDGAR database of the US Securities and Exchange Commission.

After some adjustments – to remove numbers, symbols and punctuation marks, for example – we looked at several variables, such as text length, readability and sentiment. In total, we analyzed 353,173 filings, which amounted to 20 million pages and 5 billion words. The processing time was approximately 8 hours. To put this all into perspective, the average financial analyst reads 200 words per minute and would therefore need 50 years to digest all this information.

Our study showed that text analysis can be used to automate and speed up the reading process and that text variables are informative for a firm’s future equity and credit performance, mostly concerning volatility. In conclusion, automated text processing adds value compared with manual methods used in the past.

Economic momentum and macro news surprises

This project analyzed the use of macroeconomic data to predict equity, bond and currency returns. Most statistics are published with a lag and many academic studies argue that equity returns can predict GDP growth, but that the opposite is not true.

Recent academic work came to different conclusions: macroeconomic data may provide useful investment signals after all. Our study confirmed this, finding for instance that currencies from countries with the best economic momentum outperform those of countries with the worst economic momentum.

This project also looked at so-called ‘surprise’ indices produced by brokers. For many macroeconomic statistics, economists are polled ahead of publication. The ‘surprise’ is the difference between the predicted and the actual outcome. One feature of these indices is that they are not flat, but rise and fall over time. This implies that surveys go through overly pessimistic and overly optimistic periods, which, in turn, can be used to predict equity and bond returns.

Read more about our Super Quant internship program.

1See for example: M. Dahlquist and H. Hasseltoft, 2017, ‘Economic Momentum and Currency Returns’.

重要事項

当資料は情報提供を目的として、Robeco Institutional Asset Management B.V.が作成した英文資料、もしくはその英文資料をロベコ・ジャパン株式会社が翻訳したものです。資料中の個別の金融商品の売買の勧誘や推奨等を目的とするものではありません。記載された情報は十分信頼できるものであると考えておりますが、その正確性、完全性を保証するものではありません。意見や見通しはあくまで作成日における弊社の判断に基づくものであり、今後予告なしに変更されることがあります。運用状況、市場動向、意見等は、過去の一時点あるいは過去の一定期間についてのものであり、過去の実績は将来の運用成果を保証または示唆するものではありません。また、記載された投資方針・戦略等は全ての投資家の皆様に適合するとは限りません。当資料は法律、税務、会計面での助言の提供を意図するものではありません。

ご契約に際しては、必要に応じ専門家にご相談の上、最終的なご判断はお客様ご自身でなさるようお願い致します。

運用を行う資産の評価額は、組入有価証券等の価格、金融市場の相場や金利等の変動、及び組入有価証券の発行体の財務状況による信用力等の影響を受けて変動します。また、外貨建資産に投資する場合は為替変動の影響も受けます。運用によって生じた損益は、全て投資家の皆様に帰属します。したがって投資元本や一定の運用成果が保証されているものではなく、投資元本を上回る損失を被ることがあります。弊社が行う金融商品取引業に係る手数料または報酬は、締結される契約の種類や契約資産額により異なるため、当資料において記載せず別途ご提示させて頂く場合があります。具体的な手数料または報酬の金額・計算方法につきましては弊社担当者へお問合せください。

当資料及び記載されている情報、商品に関する権利は弊社に帰属します。したがって、弊社の書面による同意なくしてその全部もしくは一部を複製またはその他の方法で配布することはご遠慮ください。

商号等: ロベコ・ジャパン株式会社  金融商品取引業者 関東財務局長(金商)第2780号

加入協会: 一般社団法人 日本投資顧問業協会