
Disclaimer
The information contained in the website is solely intended for professional investors. Some funds shown on this website fall outside the scope of the Dutch Act on the Financial Supervision (Wet op het financieel toezicht) and therefore do not (need to) have a license from the Authority for the Financial Markets (AFM).
The funds shown on this website may not be available in your country. Please select your country website (top right corner) to view more information.
Neither information nor any opinion expressed on the website constitutes a solicitation, an offer or a recommendation to buy, sell or dispose of any investment, to engage in any other transaction or to provide any investment advice or service. An investment in a Robeco product should only be made after reading the related legal documents such as management regulations, prospectuses, annual and semi-annual reports, which can be all be obtained free of charge at this website and at the Robeco offices in each country where Robeco has a presence.
By clicking Proceed I confirm that I am a professional investor and that I have read, understood and accept the terms of use for this website.
Super Quant internship theme
Machine Learning
Can machines learn Finance? This is the title of a recent paper by Israel, Kelly, Moskowitz (2020) where they discuss the premises of machine learning (ML) techniques for predicting asset returns. Gu, Kelly, Xiu, (2020) provide empirical evidence for tackling this question. They apply a set of different machine learning methods for predicting stock returns and they find that they are not only successful but they also outperform standard linear methods used in the financial literature.
Machine learning methods allow for more flexibility in capturing the relation between predictors and expected returns. Contrary to linear methods, ML can easily leverage on the non-linearities and interactions between the predictors. On the other side, ML models, because of the many degrees of freedom, are more prone to fit noise, especially in a low-signal to noise environment which characterizes financial markets.
During these challenging projects, you will apply advanced statistical techniques to large datasets containing for example individual company characteristics or macro-economic series. A good understanding of statistics and machine learning, a practical mindset and the ability to work with large amounts of data are crucial for this project. On top of that, you have strong programming skills, preferably in Python.
The goal of the project is to generate insights that will help Robeco to better translate our alpha predictions into solutions accustomed perfectly to clients’ risk profiles.
Examples of previous internship projects
Statistical clustering techniques in stock and bond selection
Predicting company earnings using Machine Learning