switzerlandde
Artificial intelligence: humanity's final invention?

Artificial intelligence: humanity's final invention?

04-01-2017 | Research

Artificial intelligence (AI) is a broad concept which has been around since the 1950s. Some, like Ray Kurzweil, foresee a limitless positive future. Others, like Stephen Hawking, predict general AI to be humanity’s last invention. As investors, we see opportunities in the ‘narrow’ form of AI.

  • Marco van Lent
    Marco
    van Lent
    Senior Portfolio Manager Equities

Speed read

  • Artificial intelligence is hot again
  • We see most opportunities in ‘narrow’ AI
  • As long as the winners are unclear, invest in the ‘shovel suppliers during the gold rush’

The attention for artificial intelligence has gone through periods of boom, bust, boom, bust, and now boom again. In order to avoid the next bust, it is crucially important to manage expectations. We believe that ‘narrow AI’ is here to stay, and that all other forms are probably still very far away.

Zu den aktuellen Einblicken
Zu den aktuellen Einblicken
Anmelden

Three forms of AI

There are many forms of AI. Often, a separation is made between weak AI and strong AI, where strong refers to everything a human can do and weak refers to specific tasks. Another, in our view better suited, specification of AI is the following:

  • Artificial narrow intelligence
  • Artificial general intelligence
  • Artificial super intelligence

Narrow intelligence is used to optimize one certain task or specializes in one specific area. An example is playing chess, or arranging timelines on social media platforms according to your interests. General intelligence would match everything a human can do and super intelligence exceeds general intelligence in that it is superior to the most intelligent benchmark. General intelligence is often seen as the holy grail, super intelligence as the feared and unknown future.

We see the best investment opportunities in artificial narrow intelligence. This is already being used today and advances in data and computing power in combination with a stronger focus on specific applications are important improvements in comparison with earlier AI boom periods.

Market potential is large, but there is little consensus on size and timing

We focus mainly on machine learning. The potential for this area to grow is very large, given the most recent advances in algorithms and data. Market size ranges from USD mid-teen-billions to USD one hundred and fifty billion by 2025. The vague definition of artificial intelligence leaves room to inflate estimates by means of including robotics or even parts of the car industry. We do not consider the exact size of the potential market to be of interest, we rather focus on how expectations are developing. Judging from that perspective it is clear that AI is hot again.

It has proven very hard to predict progress in AI. Current predictions are probably wrong again. Based on the required computing power and current data limits, it will become very hard to live up to the market’s current high expectations. This doesn’t mean we are downplaying the trend though. Narrow artificial intelligence is used today already and it is impacting the way we diagnose, interact and optimize. We believe in incremental progress from this base onwards. We do not believe in theoretical extremes, however, because the technical requirements for such scenarios are simply non-existent currently nor likely in the coming decade.

Business models provide a blueprint for AI development

We build on previous publications by Steef Bergakker that discuss the impact of business models on integration of new technology. Companies can be categorized as either value chains, value shops or value networks. We argue value chains will likely integrate artificial intelligence into their current processes in order to make these more efficient. Ocado, the online retailer in the UK, is a good example of this, as the company uses AI to optimize all of its logistics.

Value shops on the other hand are the battlefield for AI. Value shops represent specialist goods and services. Often, AI solutions also provide these specialized products, such as translation services. Progress in natural language processing, for example, is a direct threat to today’s translation services. Many more examples of specialized services and goods can be thought of to be replaced by AI in the future.

Whereas we argue AI to be sustaining innovation for value chains, we see it as potentially disruptive for value shops. The final business model, value networks, is the holy grail in terms of disruption potential. Current networking companies, like Google, Facebook and Amazon, can integrate artificial intelligence into their current offering, but we think AI has potential to assist in the creation of new value networks, potentially replacing the current ones.

Winner takes all?

Winners are networking companies and value shops that focus on artificial intelligence services. Although most companies currently working on artificial intelligence are startups (and university spin-offs), the large technology companies are best positioned. Google, Facebook, IBM, Apple, Yahoo, Microsoft, Amazon, Baidu and Alibaba have large portfolios of artificial intelligence startups. These networks buy up companies that best fit into their current product and services offerings. The one who owns the data and provides ease-of-use is likely to be a long-term winner.

For a public equity investor, it is not possible to invest in unlisted startups and an investment in technology giants will only provide little exposure to the artificial intelligence theme. It is therefore best to consider using a basket approach until true winners stand out. Instead of looking at the companies that eventually provide artificial intelligence services, it is perhaps better at this point in time to look at companies that provide resources used in that process, the so-called ‘shovel suppliers during the gold rush’. Shovels in this case are Graphics Processing Units, processors, chips, sensors, voice recognition, and so on.

Wide variety of companies challenged in the long term

Challenged companies are mostly found in the value shop segment, as services offered, such as translation, are being replaced by artificial intelligence solutions. Within value chains we believe companies that do not invest in artificial intelligence are more likely to lose out in the long run.

Weitere Artikel zu diesem Thema
Logo

Wichtige rechtliche hinweise

Die auf dieser Website dargestellten Inhalte richten sich ausschliesslich an qualifizierte Anleger gemäss Definition im Schweizer Kollektivanlagengesetz vom 23. Juni 2006 (KAG) und seiner Durchführungsverordnung oder an „unabhängige Vermögensverwalter“, auf die die zusätzlichen folgenden Voraussetzungen zutreffen. Qualifizierte Anleger sind insbesondere regulierte Finanzvermittler wie Banken, Wertpapierhändler, Fondsverwaltungsgesellschaften und Vermögensverwalter von kollektiven Kapitalanlagen sowie Zentralbanken, regulierte Versicherungsgesellschaften, Organe der öffentlichen Hand und Altersvorsorgeeinrichtungen mit professioneller Tresorerie oder Unternehmen mit professioneller Tresorerie.

Die Inhalte richten sich allerdings nicht an nicht-qualifizierte Anleger. Indem Sie unten auf „Ich stimme zu“ klicken, signalisieren Sie Ihre Bestätigung und Ihr Einverständnis, dass Sie in Ihrer Funktion als qualifizierter Anleger gemäß KAG oder „unabhängiger Vermögensverwalter“ agieren, der die zusätzlichen im Folgenden aufgeführten Voraussetzungen erfüllt. Wenn Sie ein „unabhängiger Vermögensverwalter“ sind, der alle Voraussetzungen gemäß §3 Abs. 2 c) KAG in Verbindung mit §3 KAG KAG erfüllt, bestätigen Sie durch Anklicken von „Ich stimme zu“, dass Sie die Inhalte dieser Website ausschließlich für die Kunden Ihres Kundenstamms verwenden, die qualifizierte Anleger gemäss KAG sind.

Vertreter für die ausländischen, bei der Eidgenössischen Finanzmarktaufsicht (FINMA) für den Vertrieb in der Schweiz an nicht-qualifizierte Anleger registrierten Fonds in der Schweiz ist die ACOLIN Fund Services AG, Affolternstrasse 56, 8050 Zürich, und die Zahlstelle ist UBS Schweiz AG, Bahnhofstrasse 45, 8001 Zürich. Eine Liste der bei der FINMA registrierten Fonds finden Sie auf www.finma.ch.

Weder die Informationen noch die Meinungen, die auf der Website veröffentlicht wurden, stellen ein Angebot, eine Andienung oder Empfehlung zum Kauf, Verkauf oder zur Verfügung über Anlagen, zum Abschluss von sonstigen Transaktionen oder eine Anlageberatung oder einen Anlageservice dar. Eine Anlage in ein Produkt der Robeco/RobecoSAM AG sollte nur nach Studium der zugehörigen juristischen Unterlagen, beispielsweise der Bestimmungen zur Verwaltung, der Satzung, der Prospekte, der Dokumente mit wesentlichen Informationen für den Anleger und der Jahres- und Halbjahresberichte erfolgen, die alle kostenfrei auf dieser Website, am Geschäftssitz des Vertreters in der Schweiz sowie bei allen Niederlassungen von Robeco/RobecoSAM AG in den Ländern erhältlich sind, in denen Robeco vertreten ist. Für die in der Schweiz vertriebenen Fonds ist Erfüllungsort und Gerichtsstand der Geschäftssitz des Vertreters in der Schweiz.

Diese Website richtet sich nicht an Personen in Rechtsgebieten, in denen aufgrund der Staatsbürgerschaft der Person, des Wohnorts oder aus sonstigen Gründen die Veröffentlichung bzw. Verfügbarkeit dieser Website verboten ist. Den Personen, auf die derartige Einschränkungen zutreffen, ist der Zugriff auf diese Website nicht gestattet.

Nicht Zustimmen