Factor investing debates: Do big data and AI herald a new dawn for quant?

Factor investing debates: Do big data and AI herald a new dawn for quant?

11-01-2021 | Insight
Factor investing is based on decades of publicly available empirical studies. To stand out from competition, asset managers invest significant resources in carrying out proprietary research, in an effort to enhance factor definitions or to optimize portfolio construction, for example. In this context, new tools such as alternative data and artificial intelligence (AI) are seen by some as a game changer. But is that really the case?
  • Yann Morell Y Alcover
    Morell Y Alcover
    Investment Writer

Speed read

  • Growing body of academic literature shows novel techniques are useful
  • Caveat: these innovative tools should be considered with a dose of caution
  • Basic principles – evidence-based, economic rationale and prudence – still apply

New tools such as big and alternative data, AI,1  and cloud computing have emerged as major developments for the financial industry. A 2019 survey by the Bank of England and the UK’s Financial Conduct Authority found, for instance, that two-thirds of all British financial firms were already using machine learning.2 Many of these parties expected the number of areas in which they use it to more than double in the next three years.

In asset management, although many players have publicly embraced these innovations and been beating their chests about it, practical applications have so far remained focused on areas such as process automation, and sales and marketing. Other domains, in particular investments, still stand to benefit more broadly from this kind of innovation.

According to a 2019 survey by the CFA Institute among global investment professionals,3 only 10% of the portfolio managers who responded had used AI or machine learning4  (ML) techniques to improve their investment process in the previous 12 months. In contrast, almost half of them indicated that they had used regression analysis to find a linear relationship.

But while most of these techniques are still in their infancy, a growing number of players – primarily but not exclusively hedge funds – have taken important steps to investigate how they can be used in an effort to design better quantitative investment strategies, heralding what some experts have called “the next wave of quant investing”.

At Robeco, for instance, we have invested significant resources over the past few years, leading to concrete advances in the integration of these innovative technologies into our investment processes. A case in point is the ‘news sentiment signal’ derived from advanced event-based text analytics, which is now used to enhance the momentum factor in our quantitative equity strategies.5 

Other uses of AI and alternative and big data reported by asset managers and other investment service providers include the analysis of earnings conference calls, equity trading volumes predictions, and the use of publicly available geospatial data to estimate local market share in the aggregates industry – the mining of sand, gravel and crushed rock for the production of concrete.6 

This leaves investors with a burning question, though. Should these tools be seen as a mere extension of traditional quant investment approaches, which are primarily based on decades of empirical research on factors, using signals such as accounting information, financial analyst estimates and past prices from equity, fixed income, options or lending markets? Or do they mean the drivers behind most of the existing quantitative strategies are at risk of becoming obsolete?

Innovation enthusiasts obviously argue that the latter is true.7 One common explanation is that, in a world where most active quantitative managers have access to the same data, such as stock prices or macroeconomic fundamentals, and apply the same methods, including classic linear regression analysis and mean-variance optimizations, such techniques have become the only way to stand out from both market indices and direct competitors.

At the other end of the spectrum, skeptics argue that while these innovations may be able to add marginal improvements to existing investment strategies, they should be viewed with a fair amount of caution8  and do not fundamentally call into question more traditional and transparent quantitative investment approaches.

These skeptics frequently contend that while a solid investment strategy requires extensive empirical testing and falsification on broad data samples and over long periods of time, the evidence for big and alternative data remains largely anecdotal. Alternative datasets generally have a very short history and often lack the necessary breadth and quality to draw strong conclusions.9  Sometimes, it is even questionable whether the data provider will still exist in five or ten years’ time.

Another common criticism is the lack of interpretability or ‘auditability’ of AI algorithms and machine learning models.10  As a result, investment strategies based mainly on these techniques often also lack the necessary foundation of a clear economic rationale that’s normally required of more traditional quantitative approaches.

Striving to stay ahead of the competition

This divide illustrates the struggle asset managers face in order to maintain their edge over time: stick to time-tested methods and eventually risk becoming obsolete, or embrace change and risk a major misstep into ill-fated innovation. This dilemma is exacerbated by the recent disappointing performance of several broadly accepted factors, in particular value. 

The current drawdown has brought established quantitative managers under severe scrutiny, with many investors wondering whether factor investing might need a complete overhaul. In the meantime, however, the live investment results achieved by most hardcore AI and alternative data advocates remain largely unimpressive.11 

This leaves investors with no obvious robust alternative to more traditional factors, for now at least. Things could of course change, as alternative datasets available to investors will inevitably improve over time and AI algorithms could become reliable enough to deliver on their goal of long-term outperformance on a standalone basis.

In the past, the issues surrounding the datasets that are now widely used by quantitative asset managers were similar to those surrounding big and alternative data today. Over the years the quality, breadth and history of these datasets have improved, and they have become usable. With the passage of time, and as more data becomes available, big and alternative data will likely also become increasingly usable.

At the same time, a growing body of academic literature confirms that AI techniques can be helpful tools to improve investment strategies.12 So, while machines will probably never fully replace humans, they can – under human supervision – help detect and explain new patterns. Machines can also make research production much more scalable.

What investors should do about it

Ultimately, investors should remain open-minded about new ideas. The fundamental issue for them may not necessarily be about choosing between one approach or the other. There is a wide array of possibilities, from sticking to traditional price and financial statement information at one extreme, to relying solely on information sources such as satellite imagery of parking lots and deep learning algorithms. 

The answer could well be in using a blend of information resources. For example, big data and AI signals could be very useful to fundamental credit and equity analysts. This would feed through into our quantitative strategies that take analyst revisions into account. In this case, we would be using big data and AI information in an indirect manner. Figure 1 provides an overview of how leading asset managers use such advanced analytics.

Figure 1: New sources of investment research for asset managers

Source: Doshi, S., Kwek, J.-H. and Lai, J., 20 March 2019, “Advanced analytics in asset management: Beyond the buzz”, McKinsey & Company article.

That said, it is important to remember that while innovation can help, it should be applied carefully and sensibly. Basic principles – such as ensuring that investment decisions are evidence based, prudent and with a clear economic rationale – should always apply, even when considering avant-garde techniques like alternative data or AI.

1AI can be defined as the use of computational tools to perform tasks that traditionally required human thinking. As a scientific field of research, AI is far from new. The term was coined in the mid-1950s by computer scientist John McCarthy, then assistant professor at Dartmouth College. However, recent improvements in computational power and the dramatic surge in the amount of data available in the digital age have significantly increased the scope of potential applications for these technologies.
2Jung, C., Mueller, H., Pedemonte, S., Plances, S. and Thew, O., October 2019, “Machine learning in UK financial services”, Bank of England and Financial Conduct Authority report.
3Cao, L., 2019, “AI pioneers in investment management”, CFA Institute report.
4Machine learning refers to the use of computer algorithms that improve their predictions automatically through experience. It can therefore be considered a subsegment of artificial intelligence.
5Marchesini, T. and Swinkels, L., July 2019, “Integrating news sentiment in quant equity strategies”, Robeco client note.
6The CFA Institute report mentioned in footnote 3 provides an interesting overview of pioneering, concrete applications.
7See for instance: Calvello, A., 15 January 2020, “Fund managers must embrace AI disruption”, Financial Times. See also: Rajan, A., 27 January 2020, “AI will rewrite the future of fund management”, Financial Times.
8Kirk, E., 3 March 2020, “Don’t believe the hype about AI and fund management”, Financial Times.
9See for example: Arnott, R., Harvey, C. R. and Markowitz, H., 2019, “Backtesting protocol in the era of machine learning”, The Journal of Financial Data Science.
10FSB 2017. Artificial intelligence and machine learning in financial services – Market developments and financial stability implications.
11See: Fletcher, L., 7 September 2020, “AI hedge fund Voleon suffers in choppy markets”, Financial Times.
12Simonian, J., Lopez de Prado, M., Fabozzi and F. J., 2018, “Order from chaos: How data science Is revolutionizing investment practice”, Invited editorial comment, The Journal of Portfolio Management. See also: Snow, D., 2020, “Machine learning in asset management – Part 1: Portfolio construction – Trading strategies”, The Journal of Financial Data Science. See also: Snow, D., 2020, “Machine learning in asset management—Part 2: Portfolio construction—Weight optimization”, The Journal of Financial Data Science.

Important information

This information is for informational purposes only and should not be construed as an offer to sell or an invitation to buy any securities or products, nor as investment advice or recommendation.
The contents of this document have not been reviewed by the Monetary Authority of Singapore (“MAS”). Robeco Singapore Private Limited holds a capital markets services license for fund management issued by the MAS and is subject to certain clientele restrictions under such license.
An investment will involve a high degree of risk, and you should consider carefully whether an investment is suitable for you.

Subjects related to this article are:

Important Information

Warning/Important note: This website contains information which is only available to qualified investors as defined below. If you are not a qualified investor, please click “I Disagree” to leave the website.

By clicking on "I agree", I declare that: 

  • I am a qualified investor as defined under 1
  • I have read and understood the Terms and Conditions and Disclaimers as described under 2

1 - This website may only be accessed directly or indirectly by the following persons in Singapore:

1) “institutional investor” under section 304 of the Securities and Futures Act (Cap.289)(“SFA”), which means:
(i) the Government; (ii) a statutory board as may be prescribed by regulations made under section 341 of the SFA; (iii) an entity that is wholly and beneficially owned, whether directly or indirectly, by a central government of a country and whose principal activity is (A) to manage its own funds; (B) to manage the funds of the central government of that country (which may include the reserves of that central government and any pension or provident fund of that country); or (C) to manage the funds (which may include the reserves of that central government and any pension or provident fund of that country) of another entity that is wholly and beneficially owned, whether directly or indirectly, by the central government of that country; (iv) any entity (A) that is wholly and beneficially owned, whether directly or indirectly, by the central government of a country; and (B) whose funds are managed by an entity mentioned in sub-paragraph (iii); (v) a central bank in a jurisdiction other than Singapore; (vi) a central government in a country other than Singapore; (vii) an agency (of a central government in a country other than Singapore) that is incorporated or established in a country other than Singapore; (viii) a multilateral agency, international organisation or supranational agency as may be prescribed by regulations made under section 341 of the SFA; (ix) a bank that is licensed under the Banking Act (Cap.19); (x) a merchant bank that is approved as a financial institution under section 28 of the Monetary Authority of Singapore Act (Cap.186); (xi) a finance company that is licensed under the Finance Companies Act (Cap.108); (xii) a company or co-operative society that is licensed under the Insurance Act (Cap.142) to carry on insurance business in Singapore; (xiii) a company licensed under the Trust Companies Act (Cap.336); (xiv) a holder of a capital markets services licence; (xv) an approved exchange; (xvi) a recognised market operator; (xvii) an approved clearing house; (xviii) a recognised clearing house; (xix) a licensed trade repository; (xx) a licensed foreign trade repository; (xxi) an approved holding company; (xxii) a Depository as defined in section 81SF of the SFA; (xxiii) an entity or a trust formed or incorporated in a jurisdiction other than Singapore, which is regulated for the carrying on of any financial activity in that jurisdiction by a public authority of that jurisdiction that exercises a function that corresponds to a regulatory function of the Authority under this Act, the Banking Act (Cap.19), the Finance Companies Act (Cap.108), the Monetary Authority of Singapore Act (Cap.186), the Insurance Act (Cap.142), the Trust Companies Act (Cap.336) or such other Act as may be prescribed by regulations made under section 341 of the SFA; (xxiv) a pension fund, or collective investment scheme, whether constituted in Singapore or elsewhere; (xxv) a person (other than an individual) who carries on the business of dealing in bonds with accredited investors or expert investors; (xxvi) the trustee of such trust as the Authority may prescribe, when acting in that capacity; or; (xxvii) such other person as the Authority may prescribe.

2) “relevant person” under section 305(1) of the SFA, which means:
(i) An accredited investor; (ii) a corporation the sole business of which is to hold investments and the entire share capital of which is owned by one or more individuals, each of whom is an accredited investor; (iii) a trustee of a trust the sole purpose of which is to hold investments and each beneficiary of which is an individual who is an accredited investor; (iv) an officer or equivalent person of the person making the offer (such person being an entity) or a spouse, parent, brother, sister, son or daughter of that officer or equivalent person; or (v) a spouse, parent, brother, sister, son or daughter of the person making the offer (such person being an individual).

3) any person who acquires the units [in a collective investment scheme] as principal if the offer is on terms that the units may only be required at a consideration of not less than $200,000 (or its equivalent in a foreign currency) for each transaction, whether such amount is to be paid for in cash or by exchange of units in a collective investment scheme, securities, securities-based derivatives contracts or other assets, and if the following condition is satisfied: (i) the offer is not accompanied by an advertisement making an offer or calling attention to the offer or intended offer; (ii) no selling or promotional expenses are paid or incurred in connection with the offer other than those incurred for administrative or professional services, or by way of commission or fee for services rendered by any of the persons specified in section 302B(1)(d)(i) to (vi) of the SFA; and (iii) no prospectus in respect of the offer has been registered by the Authority or, where a prospectus has been registered (A) the prospectus has eAccxpired pursuant to section 299 of the SFA; or (B) the person making the offer has before making the offer 1. informed the Authority by notice in writing of its intent to make the offer in reliance on the exemption under this subsection; and 2. taken reasonable steps to inform in writing the person to whom the offer is made that the offer is made in reliance on the exemption under this subsection.

4) Or otherwise pursuant to, and in accordance with the conditions of, any other applicable provision of the SFA.

If you are not any of the types of persons described above, you are not authorized to enter this website and you should leave this website immediately.

2 Terms and Conditions
You acknowledge that you have read these Terms and Conditions (“Terms”) prior to accessing the website located at (“Website”) and you agree to be bound by the Terms.  If you do not agree to all of the Terms, you are not an authorised user and you should not use the Website. The Website is owned by Robeco Singapore Private Limited (company registration number: UEN. 201541306Z), which is licensed by the Monetary Authority of Singapore (“MAS”) pursuant to the Securities and Futures Act (Cap.289) (“SFA”) of Singapore, and is managed by Robeco Singapore Private Limited and/or its affiliates (collectively, as “Robeco”). The Website is intended for and should be accessed by institutional investors or accredited investors (as defined under Section 4A of the SFA) of Singapore.  The Website is not directed to, or intended for distribution to or use by, any person or entity who is a citizen or resident of or located in any locality, state, country or other jurisdiction where such distribution, publication, availability or use would be contrary to law or regulation or which would subject the Robeco to any registration or licensing requirement within such jurisdiction.  It is your responsibility to observe all applicable laws, rules and regulations of any relevant jurisdiction. The content contained in the Website is owned by Robeco and/or its information providers and is protected by applicable copyrights, trademarks, service marks, and/or other intellectual property rights.  You may not copy, distribute, modify, post, frame or link the Website, including any text, graphics, video, audio, software code, user interface, design or logos.  You may not distribute, modify, transmit, reuse, repost, or use the content of the Website for public or commercial use, including all text, images, audio and/or video.  Robeco may terminate your access to the Website for any reason, without prior notice. Neither Robeco, nor any of its associates, nor any director, officer or employee accepts any liability whatsoever for any loss arising directly or indirectly from the access of the Website.  You agree to indemnity and hold Robeco, its associates, directors, officers or employees harmless against any and all claims, losses, liability, costs and expenses arising from your use of the Website due to violation of the Terms. Robeco reserves the right to change, modify, add or remove any parts of the Terms at any time and for any reason.  The Terms shall deemed to be effective immediately upon posting. The Terms shall be governed by, and shall be construed in accordance with, the law of Singapore.

The Website has not been reviewed by the MAS. Accordingly, the Website may not be accessed directly or indirectly to persons in Singapore other than (i) to an institutional investor under Section 304 of the SFA, (ii) to a relevant person pursuant to Section 305(1), or any person pursuant to Section 305(2), and in accordance with the conditions specified in Section 305, of the SFA, or (iii) otherwise pursuant to, and in accordance with the conditions of, any other applicable provision of the SFA. 

Nothing in the Website constitutes tax, accounting, regulatory, legal or investment advice.  The Website is for informational purposes only and should not be construed as an offer to sell or an invitation to buy any securities or products, nor as investment advice or recommendation or for the purpose of soliciting any action in relation to Robeco’s businesses, or solicitation by anyone in any jurisdiction in which such an offer or solicitation is not authorised or to any person to whom it is unlawful to make such an offer and solicitation. Any reproduction or distribution of information from the Website, in whole or in part, or the disclosure of its contents, without the prior written consent of Robeco, is prohibited.  By accessing to the Website, you agree to the foregoing.  

The funds referred to in the Website are for information only.  It is not a recommendation or investment advice, nor does it mean the funds is suitable for all investors.  The contents of the website is not reviewed by the MAS.  Any decision to participate in the funds should be made only after reviewing the sections regarding investment considerations, conflicts of interest, risk factors and the relevant Singapore selling restrictions.  You should consult your professional adviser if you are in doubt about the stringent restrictions applicable to the use of the Website, regulatory status of the funds, applicable regulatory protection, associated risks and suitability of the funds to your objectives.

Any decisions made based on the information contained in the Website are the sole responsibility of yours.  Any investments made or to be made shall be with your independent analyses based on your financial situation and objectives.  The investments and strategies contained in the Website may not be suitable for all investors and are not guaranteed by Robeco.  

Investment involves risks and may lose value.  Historical returns are provided for illustrative purposes only and do not necessarily reflect Robeco’s expectations for the future.  The value of your investments may fluctuate.  Past performance is no indication of current or future performance.  The Website may contain projections or other forward looking statements regarding future events or future financial performance of countries, markets or companies and such projection or forecast is not indicative of the future.  The information contained in the Website, including any data, projections and underlying assumptions are based upon certain assumptions, management forecasts and analysis of information available on an “as is” basis and without warranties of any kind, whether express or implied, and reflects prevailing conditions and Robeco’s views as of the date published or indicated, and maybe superseded by subsequent events or for other reasons.  The information contained in the Website are accordingly subject to change at any time without notice and Robeco are under no obligation to notify you of any of these changes.  Robeco expressly disclaims all liability for errors and omissions in the information presented in the Website and for the use or interpretation by others of information contained in the Website.

Robeco Singapore Private Limited holds a capital markets services licence for fund management issued by the MAS and is subject to certain clientele restrictions under such licence.  An investment will involve a high degree of risk, and you should consider carefully whether an investment is suitable for you.

I Disagree