
T H E  J O U R N A L  O F

 WINTER 2017   Volume 26 Number 4THEORY & PRACTICE FOR FUND MANAGERS

ENHANCING  
RISK PARITY BY 
INCLUDING VIEWS
DANIEL HAESEN,  
WINFRIED G. HALLERBACH,  
THIJS MARKWAT,  
AND RODERICK MOLENAAR



Robeco is an International asset manager offering an extensive range of active Investments, 
from equities to bonds. Research lies at the heart of everything we do, with a ‘pioneering but 
cautions’ approach that has been in our DNA since our foundation in Rotterdam in 1929. We  
believe strongly in sustainability investing, quantitative techniques and constant innovation.



The Journal of Investing      1Winter 2017

Daniel Haesen

is a researcher at Robeco 
Asset Management 
in Rotterdam, the 
Netherlands.
d.haesen@robeco.com

Winfried G. 
Hallerbach

is a researcher at Robeco 
Asset Management 
in Rotterdam, the 
Netherlands.
w.hallerbach@robeco.com

Thijs Markwat

is a researcher at Robeco 
Asset Management 
in Rotterdam, the 
Netherlands.
t.markwat@robeco.com

Roderick Molenaar

is a researcher at Robeco 
Asset Management 
in Rotterdam, the 
Netherlands.
r.molenaar@robeco.com

 
Enhancing Risk Parity 
by Including Views
Daniel Haesen, Winfried G. Hallerbach,  
Thijs Markwat, and Roderick Molenaar

Recently, there has been increased 
interest in applying risk control 
techniques in an asset alloca-
tion context. Risk control 

strategies, such as 1/N or equal-weighting 
(DeMiguel, Garlappi, and Uppal [2009]), 
volatility weighting (Fleming, Kirby, and 
Ostdiek [2001]; Hallerbach [2012]), max-
imum diversif ication (Choueifaty and 
Coignard [2008]), and equal risk contribu-
tion or risk parity (Qian [2005]; Maillard, 
Roncalli, and Teïletche [2010]), serve to 
control the risk profile of an investment port-
folio. Their primary goal is to avoid pockets 
of risk concentration and to achieve portfolio 
diversification against losses. Apart from this 
risk-budgeting context, risk control—and 
especially risk parity—has gained popularity 
as a full-f ledged investment criterion (see, 
for example, Amenc and Martellini [2014]). 
Under this “new paradigm” of investing, 
the significance of risk control is extended 
to offering opportunities to reap risk-adjusted 
outperformance. Backtest results seem to 
suggest that controlling the risk dimension is 
sufficient to build a portfolio, and as a result, 
risk control techniques started to compete 
with the standard mean–variance approach.

As investment criteria, mean–variance 
optimization (aiming to maximize the port-
folio’s Sharpe ratio) on the one hand, and 
risk control on the other, can be consid-
ered as two extremes. The latter criterion 

is expected returns-agnostic, whereas the 
former presupposes knowledge of expected 
returns. At the one extreme, the use of 
expected returns in the mean–variance port-
folio optimization process is problematic in 
practice. Firstly, expected returns are notori-
ously hard to estimate ex ante. Secondly, the 
misestimation of expected returns has a great 
impact on the composition of a mean–vari-
ance optimized portfolio.1 So from this per-
spective, reducing the reliance on expected 
returns is certainly attractive. At the other 
extreme, it is questionable whether any his-
torical outperformance of risk control strat-
egies can be extrapolated into the future. 
So, going forward, the use of risk control as 
the sole investment objective may have little 
appeal and falls short of including available 
information on expected returns.

In an almost natural way, these consid-
erations suggest striking a balance between 
the extremes of the unsatisfactory and the 
utopian. In particular, we propose to use the 
Black and Litterman [1991, 1992] optimiza-
tion process. Black and Litterman [1991, p. 14] 
invoke an equilibrium argument as they start 
from a global market-cap weighted portfolio 
and use the implied equilibrium views “except 
to the extent explicitly stated otherwise.” In our 
setup, however, we use the risk parity port-
folio as the reference portfolio, attuned to the 
specific investment universe of the investor. 
We consider it as the neutral starting point 
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when only risk information is available. In line with 
Carhart et al. [2014], who use a smart beta reference 
portfolio, we do not require macro-consistency2 and 
consider the risk parity portfolio as the anchor in sub-
sequent risk–return optimizations.

We therefore suggest the following stepwise port-
folio selection procedure: Start by calculating the risk 
parity portfolio, which equalizes each asset’s contribu-
tion to portfolio risk. This portfolio serves as a reference 
for our ex ante views on expected returns. In Step 2, 
apply reverse portfolio optimization and derive the 
implied expected returns (compare with Sharpe [1974]). 
These expected returns maximize the portfolio’s Sharpe 
ratio. If the implied expected returns are equal to the 
perceived views, the portfolio at hand maximizes the 
Sharpe ratio, and we are done. If not, then move to 
Step 3: adjust the implied expected returns according to 
the confidence placed in one’s ex ante views and apply 
mean–variance optimization. After this process, the 
resulting portfolio is somewhere in between the initial 
risk parity portfolio (with no confidence at all in one’s 
views) and the maximum Sharpe ratio portfolio (with 
full confidence in one’s views).

Our article is closely related to the later work of 
Jurczenko and Teiletche [2015], who also apply the 
Black–Litterman approach. In our approach, we focus 
on using the risk parity portfolio as the neutral starting 
point and illustrating the changes in the portfolio weights 
when the confidence in the views changes. Jurczenko 
and Teiletche [2015], on the other hand, build an ana-
lytical framework starting from the inverse volatility 
portfolio (where the portfolio weights are inversely pro-
portional to volatilities) with a volatility target.

Roncalli [2015] presents an alternative way to 
incorporate expected returns into risk parity portfolios. 
He considers a generalized risk measure that comprises 
not only the risk dimension (volatility) but also the per-
formance dimension (expected return). Examples are 
value-at-risk and expected shortfall under normality 
assumptions, which depend on the expected return. 
By using this generalized risk measure instead of vol-
atility alone, risk parity portfolios can be interpreted 
as mean–variance portfolios that are optimized, sub-
ject to a weight diversif ication constraint. A scaling 
parameter governs the trade-off between performance 
contributions and volatility contributions and determines 
whether the return component or the volatility compo-
nent dominates in the risk contribution. Although this 

approach is analytically elegant, how the scaling param-
eter should be set is open for debate (comparable to 
choosing the risk aversion parameter in mean–variance 
optimization).

This article is organized as follows. We start with 
a summary of the theoretical background of risk parity 
and the Bayesian portfolio revision procedure. We next 
apply these theoretical insights to an asset allocation 
setup with three asset classes: equities, bonds, and com-
modities. Finally, we discuss the implications for the 
investment decision process and provide some sugges-
tions for further research.

RISK PARITY PORTFOLIOS

It is surprising that, while ignoring information 
on expected returns, risk control portfolios appear to 
have historically outperformed market-cap-weighted or 
mean–variance-optimized portfolios (see, for example, 
Asness, Frazzini, and Pedersen [2012]). However, some 
studies tune down the apparent outperformance of 
risk-based strategies by criticizing backtests on tech-
nical grounds (see, for example, Anderson, Bianchi, and 
Goldberg [2012], who comment on Asness, Frazzini, 
and Pedersen [2012] and Goldberg and Mahmoud 
[2013]). Even when backtest assumptions are realistic 
and fair, the outperformance of risk parity strategies can 
be linked to overweighting (and leveraging) asset classes 
that in the rear-view mirror have paired high historical 
returns with low risk levels. This is most obvious for 
bonds over the past three decades. Given the current 
low interest rate environment, we deem extrapolating 
historical bond returns into the future to be not repre-
sentative. The large losses incurred by risk parity funds 
in June 2013 following the U.S. interest rate increases 
should support a healthy skepticism about the past being 
a mirror of the future.3

Nevertheless, risk control strategies can be an objec-
tive starting point in the absence of (confidence in the) 
views on expected returns. When an investor is ignorant 
about expected returns, the only advice one can give is 
to diversify. Under naive diversif ication, the investor 
applies equal money weights to the assets in his portfolio. 
However, in a multiasset portfolio, there are marked dif-
ferences between the riskiness of different asset classes. 
The volatility of equities, for example, is a multiple of 
the volatility of government bonds. So, although an 
equally weighted portfolio is perfectly balanced in terms 
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of money weights, it can be very unbalanced in terms 
of risk weights. When we instead equate the risk con-
tributions of the portfolio components, we obtain the 
risk parity portfolio.4 In such a portfolio, no single asset 
dominates the portfolio risk profile. As a result, a risk 
parity portfolio is perfectly diversified in terms of risk 
(or equivalently: loss) contributions (see Qian [2006]).

In a risk parity portfolio, the weights of all N assets 
are proportional to the inverse of their betas with respect 
to the portfolio return:

	
wi

RP

ipβ
~

1

	
(1)

where βip is the slope coefficient from a regression of the 
excess returns of asset i on the portfolio excess returns 
(for details, see the appendix). Since by definition the 
contribution of each asset to portfolio risk must equal 
1/N, the composition of the risk parity portfolio can be 
calculated easily by requiring that for each asset

w Ni ipβ = 1/ . 5

Note that we can rewrite βip as the product of 1) the 
correlation with the portfolio and 2) the quotient of the 
asset and portfolio volatility, so

	 ip ip i pβ = ρ σ σ/
	

(2)

Hence, when correlations are uniform or when 
ignored altogether, Equation (1) implies setting each 
weight proportional to the stand-alone volatility of the 
corresponding asset. Often normalization is applied to 
ensure the weights sum up to unity. This yields the 
inverse volatility portfolio (IVP).6 Neglecting cor-
relation information makes IVP a “naive” risk parity 
strategy. Volatility weighting has been applied for a long 
time by practitioners to improve cross-asset compara-
bility and to reduce portfolio or strategy risk. This prac-
tice may be inspired by statistics, where inverse variance 
weighting is used to minimize the variance of the sum of 
two or more random variables.7 The IVP is equivalent to 
the risk parity portfolio when there are only two assets 
(in the two-asset case, the correlation is irrelevant), or 
when correlations are uniform. When both correlations 
and volatilities are uniform, the IVP is the 1/N portfolio. 
Except for the impact of (markedly different) correla-
tions, IVPs will be quite similar to risk parity portfolios.

Some characteristics of risk parity portfolios are 
worth mentioning. Firstly, noting the def inition of 
beta in Equation  (2), Equation  (1) implies that risk 
parity portfolios favor assets with low levels of vola-
tility and low correlations with other assets (these assets 
are “portfolio diversifiers”). Consequently, leverage is 
needed to boost the low risk and return of risk parity 
portfolios in order to match any risk budgets or return 
targets. Secondly, the composition of the risk parity 
portfolio, like any nonmarket-cap-weighted portfolio, 
depends on choosing the number of assets and hence on 
any pre-grouping of assets (see Lee [2011]). For example, 
when a hypothetical portfolio consists of f ive asset 
classes, each asset class will receive a 20% risk weight. 
However, when we next aggregate investment grade and 
high-yield corporate bonds within this portfolio into a 
single credits portfolio, the risk allocations shift to 25%.

PORTFOLIO CONSTRUCTION  
AND INFORMATION DEMANDS

As a neutral starting point for our proposed step-
wise portfolio selection procedure, we favor the risk 
parity portfolio over other risk control portfolios. To 
corroborate our choice, we first discuss the link between 
several portfolio rules and the information burden placed 
on the investor when adopting that rule.

The portfolio decision pyramid in Exhibit 1 illus-
trates the increasing requirements that apply to portfolio 
optimization inputs when moving from a naively diver-
sified portfolio to the maximum Sharpe ratio portfolio. 
At the bottom of this inverted pyramid, we have the 
equally weighted portfolio (1/N ). Equal weighting can 
be an ex cathedra choice, or motivated by the historical 
performance of equally weighted portfolios. However, 
in the current context of mean–variance portfolio opti-
mization, equal weighting corresponds to the case where 
one cannot indicate any meaningful differences among 
expected returns, standard deviations, and correlations. 
The best one can do is to naively diversify and equate 
money weights within the portfolio. On the next level, 
one can only put reliable trust in differences among 
standard deviations. This extra information allows 
one to shift from naive money-weight diversification 
to naive risk-weight diversification applying volatility 
weighting. This yields the IVP. On the third level, one 
has full risk information. The full covariance matrix is 
available, and one has confidence in differences between 
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standard deviations and correlations. This information 
allows one to build the full minimum variance portfolio 
(MVP), the maximum diversification portfolio (MDP), 
or risk parity portfolios. Finally, at the top level, one 
is able to indicate meaningful differences between all 
relevant inputs, that is, the ex ante covariance matrix 
and the expected returns. In that case, one can perform 
a full-f ledged mean–variance optimization and obtain 
the maximum Sharpe ratio portfolio.

Having full risk information but no information on 
(differences among) expected returns places an investor 
on the third level. We favor the risk parity portfolio over 
other risk control portfolios as starting point for our step-
wise portfolio selection procedure for a number of reasons. 
First of all, the risk parity portfolio is perfectly diversified 
in terms of risk or loss contributions. In addition, it is less 
concentrated than the MVP and the MDP,8 and it con-
tains all N assets. Finally, the risk parity portfolio is more 
robust, that is, less error maximizing, than the MVP. The 
intuitive reason is that the MVP is found by means of opti-
mization, that is, by equating marginal risk contributions, 
whereas the risk parity portfolio is found by a restriction 
on the product of weights and marginal risk contributions.9

APPROACHES TO REDUCE THE IMPACT  
OF UNCERTAINTY SURROUNDING VIEWS

Although Markowitz’s [1952] mean–variance port-
folio optimization is widely used, one of the major issues 

with this approach is its sensitivity to the inputs, and espe-
cially the return forecasts. Chopra and Ziemba [1993] 
note that “errors in means are about ten times as important 
as errors in variances and covariances.” Small changes in 
the inputs can result in large and often nonintuitive 
changes in the optimized portfolio. Several authors have 
proposed solutions ranging from a Bayesian approach to 
including additional constraints (see, e.g., Jorion [1986]; 
Michaud [1989]; Black and Litterman [1991, 1992]; 
Chopra [1993]; and DeMiguel et al. [2009]).

The Black–Litterman approach is an often-used 
example of a Bayesian method to reduce the sensi-
tivity of the optimal portfolio weights to the return 
expectations. In general terms, the approach starts 
with a reference portfolio in order to derive implied 
views.10 These views will ensure that the reference 
portfolio is the mean–variance optimal portfolio if 
there are no other views. Subsequently, the investor has 
a set of (linear combinations of ) views for the assets 
as well as the confidence in each of the views. The 
Black–Litterman method then combines these two sets 
of views into a new, posterior view. The weights on 
the two views depend on the confidence in each of 
them. Mean–variance optimization based on this new 
view will generally result in a more intuitive and diver-
sif ied portfolio. For technical details, we refer to the 
appendix. Idzorek [2005] provides a good overview of 
the issues regarding the implementation of the Black–
Litterman approach.

E x h i b i t   1
The Portfolio Decision Pyramid

Note: From bottom to top, the exhibit shows the increasing informational burden when using various portfolio construction rules.

Source: Hallerbach [2015].
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We emphasize that we deviate from Black and 
Litterman [1991, 1992] by choosing the reference 
portfolio different from the market portfolio. In this 
respect, we follow Sefton, Bulsing, and Scowcroft 
[2004]; Pessaris [2012]; and Carhart et al. [2014], who 
also choose a different reference portfolio as an anchor 
for the optimization procedure. In the previous section, 
we explain our motivation to take the risk parity port-
folio as the reference portfolio. The risk parity portfolio 
is merely a natural starting point to determine the 
implied views. If a particular investor has no other views 
or no confidence in her ex ante views, then the mean–
variance optimization based on the implied views will, 
by default, result in the risk parity portfolio being her 
optimal portfolio.

DATA

To resemble an institutional investment portfolio, 
we consider three common asset classes: U.S. equities, 
Treasuries, and commodities.11 For U.S. equities, we use 
the market proxy based on the Center for Research in 
Security Prices (CSRP) database from Kenneth French’s 
website.12 For bonds, we compute the equally-weighted 
average of the Barclays Capital U.S. Treasury Interme-
diate and Long index. In this way, we better match 
the liability structure of a typical pension fund. For 
commodities, we use the S&P GSCI Ultra Light Energy 
index. This index is better diversified than the generic 
S&P GSCI index, as the weight of energy-related com-
modities is substantially smaller. All returns are in excess 
of the risk-free rate, which is the one-month T-bill from 
Kenneth French’s website. The average annual risk-
free return over the sample amounted to 4.9%. All data 
series run from February 1978 to December 2013, on 
a monthly frequency. Using a higher frequency would 
result in too much noise for the purpose of strategic 
asset allocation, and lower frequencies have the disad-
vantage of too few observations to efficiently estimate 
the models.

In Exhibit 2, we present excess return summary 
statistics and correlations. These form the starting point 
for our analyses. Panel A of Exhibit 2 shows the univar-
iate return characteristics. Over the full sample period, 
equities showed the largest annualized excess return 
(7.9%). Bonds and commodities generated an excess 
return of just over 3% and 1%, respectively. Equities 
had the highest volatility (15.8%), while the volatility 

of bonds was lowest (7.4%). Panel B of Exhibit 2 shows 
full sample correlation statistics. Bonds had relatively 
low correlations with both equities (7%) and commod-
ities (-7%), indicating diversif ication opportunities. 
The correlation between equities and commodities was 
moderately positive (31%).

MAIN RESULTS

In this section, we describe the results from our 
empirical analysis. We start with the portfolio weights 
and implied views from the risk parity portfolio. Next, 
we show how posterior views and portfolio weights 
change, depending on the confidence in one’s views.

The risk parity portfolio, the derived implied 
views, and the implied Sharpe ratios are summarized in 
Exhibit 3. We assume a risk aversion parameter δ equal to 
5 (Campbell and Viceira [2002]). The portfolio allocates 
a large extent to bonds (53.4%), followed by commodi-
ties (26.3%), and equities (20.4%). The large allocation 
to bonds is the result of the low volatility, as well as 
the low correlation of bonds with the other two assets. 
The higher allocation to commodities compared with 

E x h i b i t   2
Summary Statistics, February 1978–December 2013

E x h i b i t   3
Risk Parity Portfolio Weights, Implied Views,  
and Implied Sharpe Ratios



6      Enhancing Risk Parity by Including Views	W inter 2017

equities can largely be attributed to the lower volatility 
of commodities and its negative correlation with bonds. 
The corresponding implied views for equities, bonds, 
and commodities are 3.7%, 1.4%, and 2.9%, respectively, 
following from Equation (A-6) in the appendix. Implied 
Sharpe ratios are calculated by dividing the implied 
excess views by the historical standard deviations. The 
implied Sharpe ratios turn out to be relatively close to 
each other. This is due to the mean–variance optimality 
underlying the implied views. Note that the risk parity 
portfolio is the maximum Sharpe ratio portfolio when 
individual Sharpe ratios are the same and correlations are 
uniform. Since correlations are not uniform, we observe 
some differences across Sharpe ratios.

Next, the investor has a set of views that she will 
combine with the implied views. In this study, we use 
the historical excess returns on equities, bonds, and 
commodities from Exhibit 2 as the investor’s views. 
Furthermore, we assume that the investor has no 
(explicit) views on the risk regime.13 The use of his-
torical returns as investor’s views serves for illustrative 
purposes only. In practice, an investor may want to 
employ economic or statistical analysis to derive her 
views. The Black–Litterman approach then combines 
the two sets of views into a posterior view. Depending 
on the confidence in each of the views, the new view 
will be tilted more toward the implied view or the 

investor’s view. The relative confidence in each of the 
two sets of views will be ref lected by the ratio τ/κ. 
In most applications, the default value for τ is given by 
the inverse of the length of the historical period used 
for the estimation of the covariance matrix (τ = 1/T ). 
The value of κ, however, is provided by the investor 
and is an indication of the confidence in the investor’s 
view. If the view is certain (i.e., there is no uncertainty 
surrounding it), the value for κ will be low (κ ↓ 0), 
whereas if there is no confidence in the view, the value 
for κ will be high (κ → ∞).14 Mean–variance optimi-
zation based on the posterior views results in a new 
portfolio allocation.

Exhibits 4 and 5 show the distribution of the pos-
terior views and the corresponding portfolio weights, 
respectively, for different values of the relative con-
fidence in the implied and the investor’s views τ/κ. 
Exhibit 6 reports the exact numbers from the figures 
for the polar cases of large and low confidence in the 
investor’s views, as well as for the case with equal con-
fidence in the implied and investor’s views. We start 
with the posterior views in Exhibit 4. On the left-hand 
side, τ/κ ↓ 0 (κ → ∞), meaning that the uncertainty 
around the investor’s views is large. The posterior views 
correspond to the implied views of the reference (risk 
parity) portfolio as described in Exhibit 3. On the right-
hand side, τ/κ → ∞ (κ ↓ 0), we observe the investor’s 

E x h i b i t   4
Full Sample Posterior Views
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views that correspond to the historical views, similar 
to the average returns in Exhibit  2. In the middle, 
at τ/κ = 1, the posterior view is approximately equal to 
the average of the implied and investor’s views.15 Hence, 
an investor who has equal confidence in the implied and 
her own views will use expected returns equal to 5.6%, 
2.3%, and 2.2% for equities, bonds, and commodities, 
respectively.

From these views, the portfolio allocations nat-
urally follow. The portfolio weights are depicted in 
Exhibit 5. Because of lack of confidence in the investor’s 
views when τ/κ ↓ 0, on the left-hand side in Exhibit 5, 
the investor sticks with the risk parity portfolio, which 
spreads the risk contributions equally among the three 
asset classes. This results in the portfolio allocation as 
described in Exhibit 6. On the right-hand side, when 
τ/κ → ∞, we have (close to) full confidence in the inves-
tor’s views. This portfolio corresponds to the classical 

mean–variance portfolio, which would be obtained 
when only historical data are used. At this end, we see 
that the largest portfolio allocation (62%) goes to bonds, 
as was the case for the risk parity portfolio, but is now 
closely followed by equities (57%), which according to 
the view offer a relatively large Sharpe ratio. The allo-
cation to commodities is -19%, due to the low Sharpe 
ratio of just above zero and the positive correlation with 
equities.

The large differences in allocations resulting 
from either τ/κ ↓ 0 (risk parity) or τ/κ → ∞ (mean–
variance) show the strong impact of the views in the 
allocation process. In between the risk parity and 
mean–variance portfolio, we have the special case 
τ/κ = 1, when the investor has equal confidence in 
the implied view and the investor’s view. The resulting 
portfolio is invested 36% in equities, 58% in bonds, 
and 7% in commodities.

E x h i b i t   5
Full Sample Portfolio Weights

E x h i b i t   6
Posterior Views and Portfolio Weights over the Full Sample
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ASSET ALLOCATION IN DIFFERENT  
STATES OF THE WORLD

When the investor’s views become more distinct, 
differences between portfolio allocation methods may 
also become more extreme. Therefore, in this section, 
we will show results for views that are dependent on the 
state of the world. There are several ways of defining 
states of the world. Different econometric techniques 
could be used to identify these states, for instance, a 
Markov switching model (Hamilton [1989]). The views 
can also be based on fundamental views. However, our 
goal is not to ex ante predict which state of the world 
prevails at any point in time. Rather, we want to show 
how different views—and especially uncertainties 

around these views—affect the optimal asset alloca-
tion. The business cycle classification by the National 
Bureau of Economic Research (NBER) makes a recog-
nizable classification that clearly distinguishes between 
two different states: contractions and expansions (see, 
e.g., Lustig and Verdelhan [2012]).16

Exhibit  7 depicts NBER contraction periods 
(the periods that are not highlighted are classif ied as 
expansions) together with cumulative asset returns. 
In particular, the contractions in 2001 (IT bubble burst) 
and 2008–2009 (credit crisis) show severe negative excess 
returns for equities and commodities. This could greatly 
affect the investor’s views and corresponding portfolio 
allocation, as we will see next.

Exhibit 8 shows the annualized excess returns of 
the asset classes during expansions and contractions. 
In NBER expansions, equities were clearly superior, 
with an average return of 10.8%. Commodities per-
formed better in expansions compared with the full 
sample. During NBER contractions, returns are very 
different from those during expansions. Equities and 
commodities returned about -12% and -13%, respec-
tively. Bonds, on the other hand, performed well with 
almost 8% on average, which is commonly associ-
ated with a f light-to-quality effect in times of crises. 

E x h i b i t   7
NBER Classification and Cumulative Asset Excess Returns (logarithmic scale)

E x h i b i t   8
Annualized Excess Returns during Expansions  
and Contractions
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In line with the full sample analysis, we use the historical 
excess returns on equities, bonds, and commodities as 
the views. For our illustrative purposes, it is neither an 
impediment that the NBER classif ications are deter-
mined with hindsight, nor that views based on contrac-
tions are based on only 56 observations.

We first consider the investor who assumes that 
she is in an expansion state on the world. She has con-
structed her views accordingly (Exhibit 8). In Exhibit 9, 
we observe the posterior views. On the left-hand side, 
we again see for small values of τ/κ that the posterior 
views resemble the implied views from the reference 
portfolio. On the right-hand side, when the investor has 

full confidence in her own views, these views prevail. 
Interestingly, the figure shows that the range of views 
for commodities and bonds is rather limited, while 
the views on equities range from 3.7% (risk parity) to 
10.8% (investor’s view). The numbers are reported in 
Exhibit 10. The right-hand side of Exhibit 11 shows the 
portfolio allocations when the investor fully believes in 
the views that correspond to an expansion state of the 
world. We see larger allocations to equities and com-
modities, compared with the full sample. Nevertheless, 
the portfolio weight for commodities is still negative in 
expansions, when higher confidence is attached to the 
investor’s views, due to the large allocation to equities. 

E x h i b i t   9
Posterior Views in Expansion States of the World

E x h i b i t   1 0
Posterior Views and Portfolio Weights in NBER Expansions and Contractions
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On the other hand, the weight of bonds has become 
much smaller at about 29% (compared to 62% in the 
full sample), which can be attributed to bonds being 
relatively unattractive during expansions.

Next, we consider the case for contraction states of 
the world. During contractions, equities and commodities 

heavily underperformed, while bonds boomed. This is 
also visible in the views in Exhibit 12. Since equities and 
commodities are both unattractive in this scenario, the 
allocation to these assets is relatively small, or negative, 
depending on the confidence in the views, as shown 
in Exhibit 13 and Exhibit 10. The allocation to bonds, 

E x h i b i t   1 1
Portfolio Weights in Expansion States of the World

E x h i b i t   1 2
Posterior Views in Contraction States of the World
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on the other hand, is large, varying between 53% (risk 
parity) and 287% (investor’s views). In general, the range 
of optimal portfolio weights is large. Thus, depending on 
the confidence of the investor in her views, substantially 
different optimal portfolios can emerge.

IMPACT OF RISK AVERSION  
AND SHORT-SALE CONSTRAINTS

In this section, we perform some complementary 
analyses. First, we analyze the effect of risk aversion 
on the optimal portfolios. Second, we add restric-
tions on short selling and leverage to the framework, 

as many investors may have investment restrictions 
in practice.

In Exhibit 14, we present posterior views and port-
folio weights for a lower (d = 2) and higher (d = 10) level 
of risk aversion. If the investor’s risk aversion changes, 
all views change by the same factor, as Σw will remain 
the same (see Equation (A-6) in the appendix). When 
τ/κ ↓ 0, the posterior view will be equal to the implied 
view, which in turn implies that the optimal port-
folio equals the reference portfolio, irrespective of the 
risk aversion parameter. For instance, when d = 2, the 
investor is more aggressive and would already invest 
20.4% in equities at an implied view of 1.5%. The more 

E x h i b i t   1 3
Portfolio Weights in Contraction States of the World

E x h i b i t   1 4
Posterior Views and Portfolio Weights for Different Risk Aversion Parameters
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defensive investor would demand a much higher equity 
premium of 7.3% to govern a similar allocation of 20.4% 
to equities. For the other polar case τ/κ → ∞, or the 
traditional mean–variance framework, we see a dif-
ferent picture. The allocations for risk aversions d = 2 
and d = 10 differ substantially, although the posterior 
views are equal. This equality is implied by the full 
confidence in the investor’s views. For a given posterior 
view, the more aggressive investor takes larger (in abso-
lute terms) positions in the more risky assets.

Next, we investigate restrictions on short selling 
and leverage. Up to this stage, the only restriction on 
the portfolio weights was that the weights should add 
up to 100%. However, many institutional investors may 
be restricted in the use of derivatives to use leverage and 
implement short positions.

Therefore, we show in Exhibit 15 and Exhibit 16 
the results when short selling and leverage are not 
allowed. The analysis is carried out for a risk aversion 
parameter d = 5. As the restrictions only apply to the 
optimization, the posterior views are given by the ones 
in Exhibit 6. The portfolio weights, however, are dif-
ferent as the long-only restriction becomes binding. For 
example, when τ/κ → ∞, the investor has full confi-
dence in her views, and a short position of 19.1% in 
commodities emerges in the unrestricted base case. With 
long-only restriction, the weight for commodities is 
limited to a lower bound of 0%. The weights of equities 
and bonds are reduced from 56.9% and 62.2% to 49.1% 
and 50.9%, respectively. Exhibit 15 provides a graphical 
representation of the evolvement of the portfolio weights 
as function of the confidence in the investor’s views, 
when leverage and short selling are not allowed. If the 

E x h i b i t   1 6
Posterior Views and Portfolio Weights under Long-Only Constraint

E x h i b i t   1 5
Portfolio Weights under Long-Only Constraint
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constraints are not binding, the portfolio weights are the 
same as in the unrestricted case in Exhibit 5. Around τ ∕ 
κ = 2, the unrestricted weight for commodities becomes 
negative. As the confidence in the investor’s view further 
increases, the weights for both equities and bonds get 
close to 50%.

CONCLUSIONS

The key problem in portfolio optimization is 
not the optimization itself per se, but the specification 
of the inputs, notably the views on expected returns. 
Noting that full conf idence in expected returns in 
mean–variance optimization, on the one hand, and 
full ignorance of expected returns in risk-controlled 
strategies, on the other hand, are two extremes, we 
propose an approach to bridge the gap between the two 
environments. The use of the Black–Litterman method 
allows an investor to position herself in the continuum 
between the extremes. In our approach, we use the 
risk parity portfolio as the reference portfolio in order 
to determine the implied views. These views can then 
be adjusted by means of the investor’s view regarding 
the expected returns. The higher the confidence in 
her views, the more the investor’s portfolio will be 
shifted toward the maximum Sharpe ratio portfolio 
that is consistent with her views.

We illustrate our framework for a U.S. investor 
whose opportunity set consists of equities, bonds, and 
commodities. Of course, an investor is free to stipu-
late her own distinct views on expected returns. In our 
analysis, we assume that the investor’s views are equal 
to the historically observed average returns, while the 
uncertainty surrounding the views is related to the his-
torical volatility. These views and the corresponding 
uncertainty around them can then be used to derive the 
posterior views. These views are subsequently used in 
the optimization. As with the general Black–Litterman 
methodology, the elicitation of the confidence in (or 
uncertainty regarding) the views remains a challenge 
for further research. Our results show how the optimal 
portfolio gradually changes from the risk parity port-
folio toward the mean–variance portfolio associated 
with the investor’s views. These insights offer inves-
tors practical support to improve their asset allocation 
decisions in challenging market environments (namely, 
rising interest rates).

A p p e n d i x

The Risk Parity Portfolio

The contribution of an asset to portfolio risk equals its 
portfolio weight multiplied with its marginal contribution 
to portfolio risk. To derive this result, note that the portfolio 
volatility is linearly homogeneous in the portfolio weights: 
multiplying portfolio weights {wi} with a constant k multi-
plies the portfolio volatility with the same constant k. Euler’s 
theorem then implies that

	
w

wp i
p

i
i∑σ =

∂σ
∂ 	

(A-1)
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∂σ
∂

 is the marginal contribution of asset i to portfolio 

excess return volatility σp. It readily follows that17
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where σip is the covariance between the excess returns on 

asset i and the portfolio. Note that ip

p
ip p

σ
σ

= β ⋅ σ , where βip is 

the slope coefficient from a regression of the excess returns 

of asset i on the portfolio excess returns. The term wi
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σ
σ

 is 

the component contribution of asset i to portfolio volatility. 
The sum of all component contributions to volatility equals 
total portfolio volatility. Hence, the weights of the risk parity 
portfolio satisfy
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This implies that the weights in the risk parity portfolio 
are proportional to the inverse of the corresponding betas:

	
wi

RP

ipβ
~

1

	
(A-4)

Black–Litterman Approach

Assume that the excess returns r on the N asset classes 
are normally distributed with μ the expected returns and Σ 
the covariance matrix18:

	 r N µ Σ~ ( , ) 	 (A-5)
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The implied views are the views, which if held by 
investors, the optimal portfolio in a mean–variance context 
will be equal to a given reference portfolio w. If the risk aver-
sion parameter equals δ,19 the implied views Π are given by:

	 wΠ = δΣ 	 (A-6)

The prior is given by μ ~ N(Π, τΣ), where τ ref lects 
the uncertainty around the mean. In practice, τ is given by 
1/T with T the number of observations used to determine the 
covariance matrix Σ.20 The covariance matrix Σ is generally 
estimated using a set of historical data. This implicitly assumes 
that the returns are independent and identically distributed 
and that there is no mean reversion or aversion in multiple 
period returns.

Suppose we have K (≤ N ) linear views for (part of ) the 
N assets with the confidence represented by Ω:

	 P Q Nµ = + Ω, ~ (0, )ε ε 	 (A-7)

where P is the set of K linear combinations of assets for which 
we have views, Q is the set of K views for these combinations 
and ε contains the errors around the views. These views will 
be combined with the prior view in a Bayesian framework.

The resulting posterior distribution of the expected 
returns is given by ( , ),1N Mµ −  where

	 P P P Qµ = τΣ + ′Ω τΣ Π + ′Ω− − − − −[( ) ] [( ) ]1 1 1 1 1

	 (A-8)

and

	 M P P= τΣ + ′Ω− − − −[( ) ]1 1 1 1

	 (A-9)

As the expected returns are random variables, the dis-
tribution of the returns has to be adjusted to

	 r N µ Σ~ ( , ) 	 (A-10)

with MΣ = Σ + −1.
Assume further P = IN, that is, for each asset we have a 

view, and let Ω = κΣ represent the confidence in the views. 
The expected returns will then be distributed as

	 Qµ = τ + κ τ Π + κ− − − − −[ ] [ ]1 1 1 1 1

	 (A-11)

and

	 M = τ + κ Σ− − − −[ ]1 1 1 1

	 (A-12)

We will brief ly look at the results for three different 
values of τ/κ. The ratio τ/κ ref lects the confidence in the 
investor’s view relative to the confidence in the implied view. 
If τ/κ → ∞ (κ ↓ 0), the views become more and more certain, 

whereas for τ/κ ↓ 0 (κ → ∞), the uncertainty is very large. 
If τ/κ = 1 (κ = τ), both sources of information (implied and 
investor’s view) are given equal weight. For τ/κ → ∞ the dis-
tribution of the expected return in Equation (A-11)–Equation 
(A-12) is given by Qµ →  and M N N→−

×0 .1  The returns are 
distributed as r ~ N(Q, Σ). This is, in fact, the commonly 
used approach within the asset management industry to 
incorporate views. If there is no confidence in the investor’s 
view, however, (τ/κ ↓ 0) the distribution of the expected 
returns in Equation (A-11)–Equation (A-12) is given by µ = Π 
and M = τΣ−1 . The expected returns will not change. The 
returns are distributed as r ~ N(Π, (1 + τ)Σ). The variance 
of the returns is thus higher than in the original setting in 
Equation (A-5). This is due to the explicit recognition that 
there is already uncertainty around the mean in the implied 
view. This uncertainty is given by τΣ. Finally, if τ/κ = 1, 

then Qµ = Π +
1

2
[ ] and M = τΣ− 1

2
1 . The expected returns 

are, in this setting, equal to the average of the implied and 

the investor’s view.

ENDNOTES

1Best and Grauer [1991] and Chopra [1993] show that 
slightly different expected returns may imply very different 
mean–variance-optimized portfolios. Michaud [1989] shows 
that mean–variance optimization overweighs assets with a 
large ratio of expected returns to estimated variance; pre-
cisely these assets are likely to have large estimation errors. 
Michaud coined this effect the “error maximizing property 
of mean–variance optimization.”

2A macro-consistent portfolio is a portfolio that 
everyone in the world can hold while markets clear. The global 
market-cap-weighted portfolio is the only macro-consistent 
portfolio, and holding this self-rebalancing portfolio is the 
only macro-consistent investment strategy. 

3See, for example, Corkery, Cui, and Grind [2013].
4The term “risk parity” is confusingly also used in a generic 

sense for other risk-controlled portfolios, but here we reserve this 
term for equal risk contribution portfolios. The seminal paper 
on risk parity is Qian [2005]. For an in-depth overview of risk-
controlled portfolios, we refer to Roncalli [2013]. Hallerbach 
[2015] provides a theoretical overview, an empirical illustration, 
and a critical evaluation of risk control strategies. 

5For an overview of algorithms to calculate the risk 
parity portfolio composition, we refer to Roncalli [2013].

6See Maillard, Roncalli, and Teïletche [2010]. The IVP 
is sometimes confusingly denoted as the equal risk budget 
portfolio; see Leote de Carvalho, Lu, and Moulin [2012]. 

7Inverse variance weighting is used in weighted least 
squares regression and in meta-analyses (see, for example, 
Harrison [2011], among others).
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8See Choueifaty and Coignard [2008]. Leote de Carv-
alho, Lu, and Moulin [2012] find that there is a surprisingly 
high commonality between the MVP and the MDP.

9It can be shown that 
MVP RiskParity Nσ ≤ σ ≤ σ1/

, where the 
MVP is error maximizing and the 1/N portfolio focuses on 
money allocation, not risk allocation. Hence, the ex ante vola-
tility of the risk parity portfolio is between the lowest level 
(from the MVP) and the volatility of the naively diversified 
1/N portfolio. See Maillard, Roncalli, and Teïletche [2010].

10If the market portfolio is chosen as the reference port-
folio, as in Black and Litterman [1991], then the implied views 
are equal to the equilibrium returns that clear the markets. 

11Credits and alternative assets are also commonly part 
of institutional investment portfolios. However, to strike a 
good balance between tractability of our results and practical 
relevance, we selected these three asset classes.

12http://mba.tuck.dartmouth.edu/pages/faculty/ken 
.french/data_library.html.

13See, for example, Qian and Gorman [2001] for an 
example in the case where the investor has views on the 
covariance matrix.

14We refer to the appendix for a more thorough 
explanation. 

15If we had used the full variance–covariance matrix Σ, 
as outlined in the section on the Black–Litterman approach in 
the appendix, the posterior views at τ/κ = 1 would be exactly 
similar to the average of the risk parity and the investor’s 
views. However, to generate the results in this section, we 
have assumed that the investor uses a diagonal matrix for Ω, 
that is, only variances. This assumption matches practice more 
closely, as investors usually have views on the means and con-
sider uncertainty around these means on a stand-alone basis. 

16See www.nber.org.
17See Qian [2006] or Roncalli [2013]. Alternatively, in 

matrix notation we obtain 
w

w

w w
p∂σ

∂
=

Σ
′ Σ

, where w is the 

weight vector and S is the covariance matrix.
18The derivation is based on He and Litterman [1999].
19The utility function of the investor is given by

max x x x
x

′Π − δ ′ Σ
1

2
, with x the portfolio weights.

20Satchell and Scowcroft [2000] discuss an extension of 
the method where τ is unknown and stochastic.
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