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1Readers interested in the theoretical underpinnings of ML algorithms, such as random forest or neural networks, should read Hastie, Tibshirani, 
and Friedman (2009) and Goodfellow, Bengio, and Courville (2016).

2There are also numerous academic studies on using ML to predict returns. For example, ML techniques have been applied in a single-country 
setting by Gu, Kelly, and Xiu (2020) to the United States, by Abe and Nakayama (2018) to Japan, and by Leippold, Wang, and Zhou (2022) to 
China’s A-share markets. Similarly, in a multi-country/regional setting, ML has been applied by Tobek and Hronec (2021) and Leung, Lohre, 
Mischlich, Shea, and Stroh (2021) to developed markets and by Hanauer and Kalsbach (2022) to emerging markets.

3For linear equity models, see, for example, Grinold and Kahn (1999).

Introduction
In recent years, machine learning (ML) has been a popular 
technique in various domains, ranging from streaming video 
and online shopping recommendations to image detection 
and generation to autonomous driving. The attraction and 
desire to apply machine learning in finance are no different.

• “The global AI fintech market is predicted to grow at a 
CAGR of 25.3% between 2022 and 2027” (Columbus 
2020).

• “A survey of IT executives in banking finds that 85% 
have a ‘clear strategy’ for adopting AI in developing 
new products and services” (Nadeem 2018).

Putting aside the common and widespread confusion 
between artificial intelligence (AI) and ML (see, e.g., Cao 
2018; Nadeem 2018), the growth of ML in finance is pro-
jected to be much faster than that of the overall industry 
itself, as the previous quotes suggest. Faced with this 
outlook, practitioners may want answers to the following 
questions:

• What does ML bring to the table compared with tradi-
tional techniques?

• How do I make ML for finance work? Are there special 
considerations? What are some common pitfalls?

• What are some examples of ML applied to finance?

In this chapter, we explore how ML can be applied from 
a practitioner’s perspective and attempt to answer many 
common questions, including the ones above.1

The first section of the chapter discusses practi-
tioners’ motivations for using ML, common challenges in 

implementing ML for finance, and solutions. The second 
section discusses several concrete examples of ML appli-
cations in finance and, in particular, equity investments.

Motivations, Challenges, 
and Solutions in Applying ML 
in Investments
In this section, we discuss reasons for applying ML, the 
unique challenges involved, and how to avoid common 
pitfalls in the process.

Motivations

The primary attraction of applying ML to equity investing, as 
with almost all investment-related endeavors, is the promise 
of higher risk-adjusted return. The hypothesis is that these 
techniques, explicitly designed for prediction tasks based on 
high-dimensional data and without any functional form spec-
ification, should excel at predicting future equity returns.

Emerging academic literature and collective practitioner 
experience support this hypothesis. In recent years, practi-
tioners have successfully applied ML algorithms to predict 
equity returns, and ML-based return prediction algorithms 
have been making their way into quantitative investment 
models. These algorithms have been used worldwide in 
both developed and emerging markets, for large-cap and 
small-cap investment universes, and with single-country 
or multi-country strategies.2 In general, practitioners have 
found that ML-derived alpha models outperform those 
generated from more traditional linear models3 in predicting 
cross-sectional equity returns.

© 2023 CFA Institute Research Foundation. All rights reserved.
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In addition to predicting equity returns, ML has been 
used to predict intermediate metrics known to predict 
future returns. For example, practitioners have used ML to 
forecast corporate earnings and have found ML-derived 
forecasts to be significantly more accurate and infor-
mative than other commonly used earnings prediction 
models.4 Another use of ML in equity investing developed 
by Robeco’s quantitative researchers has been to predict 
not the entire investment universe’s return but the returns 
of those equities that are likely to suffer a severe price drop 
in the near future. Investment teams at Robeco have found 
that ML techniques generate superior crash predictions 
compared with those from linear models using traditional 
metrics, such as leverage ratio or distance to default.5

What drives the outperformance of ML over other known 
quantitative techniques? The main conclusion from prac-
titioners and academics is that because ML algorithms 
do not prespecify the functional relationship between the 
prediction variables (equity return, future earnings, etc.) 
and the predictors (metrics from financial statements, past 
returns, etc.), ML algorithms are not constrained to a linear 
format as is typical of other techniques but, rather, can 
uncover interaction and nonlinear relationships between 
the input features and the output variable(s).

4This conclusion was replicated and supported also by academics. For example, see Cao and You (2021).

5For more information on using ML for crash prediction, see Swinkels and Hoogteijling (2022).

6For more details, see Birge and Zhang (2018).

7Neural networks incorporate nonlinearity through activation functions in each neuron. Without activation functions, neural networks, regardless 
of their depth, reduce down to traditional linear models commonly used in finance. For more on activation functions, see Goodfellow et al. (2016).

Interaction and nonlinear effects

The interaction effect occurs when the prediction outputs 
cannot be expressed as a linear combination of the individ-
ual inputs because the effect of one input depends on the 
value of the other ones. Consider a stylistic example of pre-
dicting equity price based on two input features: reported 
earnings and an accounting red flag, where the red-flag 
input is binary: 0 (no cause of concern) and 1 (grave con-
cern). The resulting ML output with these two inputs may 
be that when the red-flag input is 0, the output is linearly 
and positively related to reported earnings; in contrast, 
when the red-flag input is 1, the output is a 50% decrease 
in price regardless of the reported earnings. Exhibit 1 
illustrates this stylistic example.

ML prediction can also outperform the traditional linear 
model prediction due to nonlinear effects. There are many 
empirically observed nonlinear effects that linear models 
cannot model. For example, there is a nonlinear relation-
ship between a firm’s credit default swap (CDS) spread 
and its equity returns because equity can be framed as an 
embedded call option on a firm’s assets, thereby introduc-
ing nonlinearity.6 Exhibit 2 illustrates this example. Many 
ML algorithms, particularly neural networks,7 explicitly 

Exhibit 1. Illustration of the Interaction Effect between Accounting Red Flags 
and Equity Returns

Return

Accounting Red Flag = 0

Accounting Red Flag = 1

Reported Earnings

Source: Robeco.
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introduce nonlinearity into the model setup, facilitating 
nonlinearity modeling.

Empirically, academics and practitioners have found that 
the interaction effect accounts for a large portion of ML 
techniques’ outperformance, while the jury is still out on 
whether nonlinear effects contribute positively to the out-
performance. A well-known study in the field by Gu, Kelly, 
and Xiu (2020, p. 2258) found that “the favorable perfor-
mance of [ML algorithms] indicates a benefit to allowing for 
potentially complex interactions among predictors.” In the 
study, comparing the performance of purely linear models 
with that of generalized linear models, the authors note that 
“the generalized linear model … fails to improve on the per-
formance of purely linear methods (R2

OOS of 0.19%). The fact 
that this method uses spline functions of individual features, 
but includes no interaction among features, suggests that 
univariate expansions provide little incremental information 
beyond the [purely] linear model” (Gu et al. 2020, p. 2251). 
However, other studies have found that both interaction and 
nonlinear effects contribute positively to ML models’ outper-
formance (see, e.g., Abe and Nakayama 2018; Swinkels and 
Hoogteijling 2022; Choi, Jiang, and Zhang 2022).

Find relationships from the data deluge

Another attraction of applying ML to financial markets is 
the promise of having the algorithm discover relation-
ships not specified or perhaps not known by academics 
and practitioners—that is, data mining, which historically 
has been a pejorative in quantitative finance circles. 

8Examples include k-fold cross-validation, dropout, and regularization. For deeper discussions, see Hastie et al. (2009) and Goodfellow et al. 
(2016).

Another term being used, perhaps with a more positive 
connotation, is “knowledge discovery.”

With the ongoing information and computing revolution and 
the increased popularity of quantitative finance, the amount 
of financial data is growing at a rapid pace. This increased 
amount of data may or may not embody relevant informa-
tion for investment purposes. Since many of the data types 
and sources are new, many investors do not have a strong 
prior opinion on whether and how they can be useful. Thus, 
ML algorithms that are designed to look for relationships 
have become attractive for practitioners and academics in 
the hope that, even without specifying a hypothesis on the 
economic relationship, the ML algorithm will figure out the 
link between inputs and outputs. Although ML algorithms 
have built-in mechanisms to combat overfitting or discover-
ing spurious correlations between input features and output 
predictions,8 caution must still be taken to avoid discovering 
nonrepeatable and nonreplicable relationships and patterns. 
Later in this chapter, we will address this issue further and 
consider other challenges practitioners face when imple-
menting ML in live portfolios. But first, we will discuss what 
makes the financial market different from other domains in 
which ML has shown tremendous success.

Unique Challenges of Applying ML 
in Finance

When applying ML for investments, great care must be 
taken because financial markets differ from domains where 

Exhibit 2. Illustration of the Nonlinear Relationship between a CDS 
and Equity Returns

Return

CDS Spread

Source: Robeco.
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ML has made tremendous strides. These differences can 
mitigate many of the specific advantages ML algorithms 
enjoy, making them less effective in practice when applied 
in real-life situations. A few of these differences follow.

Signal-to-noise ratio and system 
complexity

Financial data have a low signal-to-noise ratio. For a given 
security, any one metric is generally not a huge determinant 
of how that security will perform. For example, suppose 
Company XYZ announced great earnings this quarter. Its 
price can still go down after the announcement because 
earnings were below expectations, because central banks 
are hiking interest rates, or because investors are generally 
long the security and are looking to reduce their positions. 
Compare this situation with a high signal-to-noise domain—
for example, streaming video recommendation systems. 
If a person watches many movies in a specific genre, 
chances are high that the person will also like other movies 
in that same genre. Because financial returns compress 
high-dimensional information and drivers (company-specific, 
macro, behavioral, market positioning, etc.) into one dimen-
sion, positive or negative, the signal-to-noise ratio of any 
particular information item is generally low.

It is fair to say that the financial market is one of the most 
complex man-made systems in the world. And this com-
plexity and low signal-to-noise ratio can cause issues 
when ML algorithms are not applied skillfully. Although ML 
algorithms are adept at detecting complex relationships, 
the complexity of the financial market and the low signal-
to-noise ratio that characterizes it can still pose a problem 
because they make the true relationship between drivers of 
security return and the outcome difficult to detect.

Small vs. big data

Another major challenge in applying ML in financial markets 
is the amount of available data. The amount of financial data 
is still relatively small compared with many domains in which 
ML has thrived, such as the consumer internet domain or 
the physical sciences. The data that quantitative investors 
traditionally have used are typically quarterly or monthly. 
And even for the United States, the market with the longest 
available reliable data, going back 100 years, the number of 
monthly data points for any security we might wish to con-
sider is at most 1,200. Compared with other domains where 
the amount of data is in the billions and trillions, the quantity 
of financial data is minuscule. To be fair, some of the newer 
data sources, or “alternative data,” such as social media 
posts or news articles, are much more abundant than tradi-
tional financial data. However, overall, the amount of financial 
data is still small compared with other domains.

9There have been various studies on how greed and fear affect market participants’ decision-making process. See, for example, Lo, Repin, and 
Steenbarger (2005).

The small amount of financial data is a challenge to ML 
applications because a significant driver of an ML algo-
rithm’s power is the amount of available data (see Halevy, 
Norvig, and Pereira 2009). Between a simple ML algorithm 
trained on a large set of data versus a sophisticated ML 
algorithm trained on a relatively smaller set of data, the 
simpler algorithm often outperforms in real-life testing. With 
a large set of data, investors applying ML can perform true 
cross-validation and out-of-sample testing to minimize 
overfitting by dividing input data into different segments. 
The investor can conduct proper hyperparameter tuning 
and robustness checks only if the amount of data is large 
enough. The small amount of financial data adds to the 
challenges of applying ML to financial markets mentioned 
earlier—the financial markets’ high system complexity and 
low signal-to-noise ratio.

Stationarity vs. adaptive market, 
irrationality

Finally, what makes financial markets challenging for ML 
application in general is that markets are nonstationary. 
What we mean is that financial markets adapt and change 
over time. Many other domains where ML algorithms have 
shined are static systems. For example, the rules govern-
ing protein unfolding are likely to stay constant regardless 
of whether researchers understand them. In contrast, 
because of the promised rewards, financial markets “learn” 
as investors learn what works over time and change their 
behavior, thereby changing the behavior of the overall 
market. Furthermore, because academics have been suc-
cessful over the last few decades in discovering and pub-
lishing drivers of market returns—for example, Fama and 
French (1993)—their research also increased knowledge of 
all market participants and such research changes market 
behavior, as noted by McLean and Pontiff (2016).

The adaptive nature of financial markets means not only 
that ML algorithms trained for investment do not have a 
long enough history with which to train the model and a 
low signal-to-noise ratio to contend with but also that the 
rules and dynamics that govern the outcome the models 
try to predict also change over time. Luckily, many ML algo-
rithms are adaptive or can be designed to adapt to evolving 
systems. Still, the changing system calls into question 
the validity and applicability of historical data that can be 
used to train the algorithms—data series that were not 
long enough to begin with. To further complicate the issue, 
financial markets are man-made systems. Their results 
are the collective of individual human actions, and human 
beings often behave irrationally—for example, making deci-
sions based on greed or fear.9 This irrationality characteris-
tic does not exist in many of the other domains in which ML 
has succeeded.
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How to Avoid Common Pitfalls When 
Applying ML in Finance

This section addresses some potential pitfalls when apply-
ing ML to financial investment.10

Overfitting

Because of the short sample data history, overfitting is 
a significant concern when applying ML techniques in 
finance. This concern is even stronger than when applying 
traditional quantitative techniques, such as linear regres-
sion, because of the high degrees of freedom inherent in 
ML algorithms. The result of overfitting is that one may get 
a fantastic backtest, but out-of-sample, the results will not 
live up to expectations.

There are some common techniques used in ML 
across all domains to combat overfitting. They include 
cross-validation, feature selection and removal, regulariza-
tion, early stopping, ensembling, and having holdout data.11 
Because of the lower sample data availability in finance, 
some of these standard techniques might not be applica-
ble or work as well in the financial domain as in others.

However, there are also advantages to working in the 
financial domain. The most significant advantage is human 
intuition and economic domain knowledge. What we mean 
by this is that investors and researchers applying machine 
learning can conduct “smell tests” to see whether the rela-
tionships found by ML algorithms between input features 
and output predictions make intuitive or economic sense. 
For example, to examine the relationship between inputs 
and outputs, one can look at Shapley additive explanation 
(SHAP) value, introduced by Lundberg and Lee (2017). SHAP 
value is computed from the average of the marginal con-
tribution of the feature when predicting the targets, where 
the marginal contribution is computed by comparing the 
performance after withholding that variable from the fea-
ture set versus the feature set that includes the variable.

Exhibit 3 plots SHAP values from Robeco’s work on using 
ML to predict equity crashes,12 where various input features 
are used to predict the probability of financial distress of 
various stocks in the investment universe. The color of 
each dot indicates the sign and magnitude of a feature, 
where red signals a high feature value and blue denotes a 
low feature value. Take Feature 25, for example. As the fea-
ture value increases (as indicated by the color red), the ML 
algorithm predicts a higher probability of financial distress. 

10For additional readings, see, for example, López de Prado (2018); Arnott, Harvey, and Markowitz (2019); Leung et al. (2021).

11See Hastie et al. (2009) and Goodfellow et al. (2016) for more discussion on these techniques.

12For more details, see Swinkels and Hoogteijling (2022).

13See Jessen and Lando (2013) for more discussion on distance to default.

14See Harvey, Liu, and Zhu (2016) and Hou, Xue, and Zhang (2020) for more discussion on the replicability crisis in finance.

And as the feature value decreases (as indicated by the 
color blue), the ML algorithm predicts a lower probability of 
financial distress. With this information, experienced inves-
tors can apply their domain knowledge to see whether the 
relationship discovered by the ML algorithm makes sense. 
For example, if Feature 25, in this case, is the leverage ratio 
and Feature 1 is distance to default,13 then the relation-
ship may make sense. However, if the features are flipped 
(Feature 25 is distance to default and Feature 1 is the 
leverage ratio), then it is likely that the ML algorithm made a 
mistake, possibly through overfitting.

Another approach to mitigate overfitting and having ML 
algorithms find spurious correlations is to try to eliminate 
it from the start. Ex post explanation via SHAP values and 
other techniques is useful, but investors can also apply 
their investment domain knowledge to curate the input set 
to select those inputs likely to have a relationship with the 
prediction objective. This is called “feature engineering” in 
ML lingo and requires financial domain knowledge. As an 
example, when we are trying to predict stock crash proba-
bility, fundamental financial metrics such as profit margin 
and debt coverage ratio are sensible input features for the 
ML algorithm, but the first letter of the last name of the CEO, 
for example, is likely not a sensible input feature.

Replicability

There is a debate about whether there is a replicability 
crisis in financial research.14 The concerns about replicabil-
ity are especially relevant to results derived from applying 
ML because, in addition to the usual reasons for replicabil-
ity difficulties (differences in universe tested, p-hacking, 
etc.), replicating ML-derived results also faces the following 
challenges:

• The number of tunable variables in ML algorithms is 
even larger than in the more traditional statistical 
techniques.

• ML algorithms are readily available online. Investors 
can often download open-sourced algorithms from 
the internet without knowing the algorithm’s specific 
version used in the original result, random seed, and 
so on. In addition, if one is not careful, different imple-
mentations of the same algorithm can have subtle 
differences that result in different outcomes.

To avoid replicability challenges, we suggest ML inves-
tors first spend time building up a robust data and code 
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infrastructure to conduct ML research and experiments. 
This includes, but is not limited to, the following:

• A robust system for code version control, a way to 
specify and fix all parameters used in the algorithm, 
including ML algorithm version number, investment 
universe tested, hyperparameters, feature sets used, 
and so on

• Documentation of all the tested iterations and hypoth-
eses, including those that failed to show good results 
(in other words, showing the research graveyards)

15This is called “point-in-time” in the quant investment industry.

Such documentation listed above may not be possible 
regarding publicly disclosed results, but it should at least 
be attempted when discussing and verifying results within 
the same organization.

Lookahead bias/data leakage

Lookahead bias is another commonly known issue for 
experienced quant investors that applies to ML. An example 
would be that if quarterly results are available only 40 days 
after the quarter end, the quarterly data should be used 
only when available historically15 and not at the quarter 
end date.

Exhibit 3. SHAP Value between Input Features and ML Output Predicting 
Financial Distress
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Other cases can be more subtle. For example, if one con-
ducts research over a period that includes the tech bubble 
and its subsequent crash (2000–2002) and the investment 
universe tested does not include information technology 
(IT) firms, then it is incumbent upon the investor to provide 
a sensible reason why IT firms are not included.

Related to lookahead bias and a more general problem 
directly related to ML is the problem of data leakage. Data 
leakage occurs when data used in the training set contain 
information that can be used to infer the prediction, infor-
mation that would otherwise not be available to the ML 
model in live production.

Because financial data occur in time series, they are often 
divided chronologically into training, validation, and testing 
sets. ML predictive modeling aims to predict outcomes the 
model has not seen before. One form of data leakage can 
occur if information that should be in one set ends up in 
another among the three sets of data (training, validation, 
and testing). When this occurs, the ML algorithm is evalu-
ated on the data it has seen. In such cases, the results will 
be overly optimistic and true out-of-sample performance 
(that is, the live performance of the algorithm) will likely 
disappoint. This phenomenon is called “leakage in data.”

Another type of data leakage is called “leakage in features.” 
Leakage in features occurs when informative features about 
the prediction outcome are included but would otherwise 
be unavailable to ML models at production time, even if 
the information is not in the future. For example, suppose 
a company’s key executive is experiencing serious health 
issues but the executive has not disclosed this fact to the 
general public. In that case, including that information in the 
ML feature set may generate strong backtest performance, 
but it would be an example of feature leakage.

Various techniques can be applied to minimize the possibil-
ity of data leakage. One of the most basic is to introduce a 
sufficient gap period between training and validation sets 
and between validation and testing. For example, instead of 
having validation sets begin immediately after the end of the 
training set, introduce a time gap of between a few months 
and a few quarters to ensure complete separation of data. 
To prevent data leakage, investors applying ML should think 
carefully about what is available and what is not during the 
model development and testing phases. In short, common 
sense still needs to prevail when applying ML algorithms.

Implementation gap

Another possible pitfall to watch out for when deploying ML 
algorithms in finance is the so-called implementation gap, 

16For additional readings, see, for example, Avramov, Chordia, and Goyal (2006); López de Prado (2018); Hou et al. (2020); Avramov, Cheng, and 
Metzker (2022).

17In addition to the SHAP values discussed in Lundberg and Lee (2017), recent works in the area of explainable machine learning include Li, 
Turkington, and Yazdani (2020); Li, Simon, and Turkington (2022); and Daul, Jaisson, and Nagy (2022).

defined as trading instruments in the backtest that are 
either impossible or infeasible to trade in live production. 
An example of an implementation gap is that the ML algo-
rithm generates its outperformance in the backtest mainly 
from small- or micro-cap stocks. However, in live trading, 
either these small- or micro-cap stocks may be too costly 
to trade because of transaction costs or there might not be 
enough outstanding shares available to own in the scale 
that would make a difference to the strategy deploying 
the ML algorithm. As mentioned, implementation affects 
all quant strategies, not just those using ML algorithms. 
But ML algorithms tend to have high turnover, increasing 
trading cost associated with smaller market-cap securities. 
Similar to small- or micro-cap stocks, another example of an 
implementation gap is shorting securities in a long–short 
strategy. In practice, shorting stocks might be impossible 
or infeasible because of an insufficient quantity of a given 
stock to short or excessive short borrowing costs.16

Explainability and performance attribution

A main criticism of applying machine learning in finance is 
that the models are difficult to understand. According to Gu 
et al. (2020, p. 2258), “Machine learning models are often 
referred to as ‘black boxes,’ a term that is in some sense a 
misnomer, as the models are readily inspectable. However, 
they are complex, and this is the source of their power and 
opacity. Any exploration of the interaction effect is vexed 
by vast possibilities for identity and functional forms for 
interacting predictors.”

Machine learning for other applications might not need to 
be fully explainable at all times; for example, if the ML algo-
rithm suggests wrong video recommendations based on 
the viewers’ past viewing history, the consequences are 
not catastrophic. However, with billions of investment dol-
lars on the line, asset owners demand managers that use 
ML-based algorithms explain how the investment decisions 
are made and how performance can be attributed. In recent 
years, explainable machine learning has emerged in the 
financial domain as a focus topic for both practitioners and 
academics.17

The fundamental approach to recent explainable machine 
learning work is as follows:

1. For each input feature, fi, in the ML algorithm, fix its 
value as x. Combine this fixed value for fi with all other 
sample data while replacing feature fi with the value x. 
Obtain the prediction output.

2. Average the resulting predictions. This is the partial 
prediction at point x.
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3. Now range the fixed value x over feature fi’s typical 
range to plot out the resulting function. This is called 
the “partial dependence response” to feature fi.

This response plot, an example of which is illustrated in 
Exhibit 4, can then be decomposed into linear and nonlin-
ear components.

Similarly, one can estimate the pairwise-interaction part 
of the ML algorithm, computed using joint partial predic-
tion of features fi and fj, by subtracting the partial pre-
diction of each feature independently. An example of the 
pairwise-interaction result is shown in Exhibit 5.

Exhibits 3–5 allow ML investors to understand how the 
input features affect the output prediction. To conduct 
performance attribution of an ML portfolio and decompose 
it into the various parts (linear, interaction, and nonlinear), 
one can extract the partial dependence responses and 
form portfolios from them. With this approach, one can get 
return attribution, as shown in Exhibit 6.

Sample ML Applications 
in Finance
We have seen the common pitfalls when applying ML to 
finance and the strategies to mitigate them. Let us now 
look at examples of ML applied to financial investing.18

18For more general applications of ML to finance, see López de Prado (2019).

19This problem has been studied in numerous recent papers—for example, Abe and Nakayama (2018); Rasekhschaffe and Jones (2019); Gu et al. 
(2020); Choi, Jiang, and Zhang (2022); Hanauer and Kalsbach (2022).

20In addition to cross-sectional returns, Gu et al. (2020) also study the time-series problem.

21However, when compared with other fields, the amount of data here is still miniscule, as noted before.

Predicting Cross-Sectional Stock 
Returns

In this section, we discuss specifically using ML to predict 
cross-sectional stock returns.

Investment problem

Perhaps the most obvious application of ML to financial 
investments is to directly use ML to predict whether each 
security’s price is expected to rise or fall and whether to 
buy or sell those securities. Numerous practitioners and 
academics have applied ML algorithms to this prediction 
task.19

The ML algorithms used in this problem are set up to 
compare cross-sectional stock returns. That is, we are 
interested in finding the relative returns of securities in our 
investment universe rather than their absolute returns.20 
The ML algorithms make stock selection decisions rather 
than country/industry timing and allocation decisions. 
Stock selection is an easier problem than the timing and 
allocation problem, because the algorithms have more data 
to work with.21

Exhibit 4. Linear and Nonlinear Decomposition of an ML Algorithm’s Output 
to Input Feature fi
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Methodology

This problem is set up with the following three major 
components:

1. Investment universe: US, international, emerging 
market, and so on

2. ML algorithms: (boosted) trees/random forests, neural 
networks with l layers, and so on, and ensembles thereof

3. Feature set: typical financial metrics that are used 
in linear models, such as various price ratios (value), 
profitability (quality), and past returns (momentum)

Note that for Item 3, by using a very limited feature set, the 
ML investor is essentially applying her domain knowledge 
and imposing a structure on the ML algorithm to counter 
the limited data challenge discussed in the previous 
section.

Exhibit 5. Example of the Pairwise-Interaction Effect
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Exhibit 6. Example ML Portfolio Return Attribution
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Results

There are five consistent results that various practitioner 
and academic studies have found. First and foremost, 
there is a statistically significant and economically mean-
ingful outperformance of ML algorithm prediction versus 
the traditional linear approach. For example, in forming a 
long–short decile spread portfolio from (four-layer) neural 
network–generated stock return prediction, a well-known 

study in equity return prediction (Gu et al. 2020) found that 
the strategy has an annualized out-of-sample Sharpe ratio 
of 1.35 under value weighting and 2.45 under equal weight-
ing. For comparison, the same portfolio constructed from 
ordinary least squares (OLS) prediction with the same input 
features produced a Sharpe ratio of 0.61 and 0.83 for value 
weighting and equal weighting, respectively. Exhibit 7 
shows the value-weighting results.

Exhibit 7. Out-of-Sample Performance of Benchmark OLS Portfolio 
vs. Various ML Portfolios, Value Weighting

OLS-3+H PLS PCR

Pred. Avg.
Std. 
Dev.

Sharpe 
Ratio Pred. Avg.

Std. 
Dev.

Sharpe 
Ratio Pred. Avg.

Std. 
Dev.

Sharpe 
Ratio

Low (L) −0.17 0.40 5.90 0.24 −0.83 0.29 5.31 0.19 −0.68 0.03 5.98 0.02

2 0.17 0.58 4.65 0.43 −0.21 0.55 4.96 0.38 −0.11 0.42 5.25 0.28

3 0.35 0.60 4.43 0.47 0.12 0.64 4.63 0.48 0.19 0.53 4.94 0.37

4 0.49 0.71 4.32 0.57 0.38 0.78 4.30 0.63 0.42 0.68 4.64 0.51

5 0.62 0.79 4.57 0.60 0.61 0.77 4.53 0.59 0.62 0.81 4.66 0.60

6 0.75 0.92 5.03 0.63 0.84 0.88 4.78 0.64 0.81 0.81 4.58 0.61

7 0.88 0.85 5.18 0.57 1.06 0.92 4.89 0.65 1.01 0.87 4.72 0.64

8 1.02 0.86 5.29 0.56 1.32 0.92 5.14 0.62 1.23 1.01 4.77 0.73

9 1.21 1.18 5.47 0.75 1.66 1.15 5.24 0.76 1.52 1.20 4.88 0.86

High (H) 1.51 1.34 5.88 0.79 2.25 1.30 5.85 0.77 2.02 1.25 5.60 0.77

H – L 1.67 0.94 5.33 0.61 3.09 1.02 4.88 0.72 2.70 1.22 4.82 0.88

ENet+H GLM+H RF

Pred Avg
Std. 
Dev.

Sharpe 
Ratio Pred Avg

Std. 
Dev.

Sharpe 
Ratio Pred Avg

Std. 
Dev.

Sharpe 
Ratio

Low (L) −0.04 0.24 5.44 0.15 −0.47 0.08 5.65 0.05 0.29 −0.09 6.00 −0.05

2 0.27 0.56 4.84 0.40 0.01 0.49 4.80 0.35 0.44 0.38 5.02 0.27

3 0.44 0.53 4.50 0.40 0.29 0.65 4.52 0.50 0.53 0.64 4.70 0.48

4 0.59 0.72 4.11 0.61 0.50 0.72 4.59 0.55 0.60 0.60 4.56 0.46

5 0.73 0.72 4.42 0.57 0.68 0.70 4.55 0.53 0.67 0.57 4.51 0.44

6 0.87 0.85 4.60 0.64 0.84 0.84 4.53 0.65 0.73 0.64 4.54 0.49

7 1.01 0.87 4.75 0.64 1.00 0.86 4.82 0.62 0.80 0.67 4.65 0.50

8 1.16 0.88 5.20 0.59 1.18 0.87 5.18 0.58 0.87 1.00 4.91 0.71

9 1.36 0.80 5.61 0.50 1.40 1.04 5.44 0.66 0.96 1.23 5.59 0.76

High (H) 1.66 0.84 6.76 0.43 1.81 1.14 6.33 0.62 1.12 1.53 7.27 0.73

H – L 1.70 0.60 5.37 0.39 2.27 1.06 4.79 0.76 0.83 1.62 5.75 0.98

(continued)
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GBRT+H NN1 NN2

Pred Avg
Std. 
Dev.

Sharpe 
Ratio Pred Avg

Std. 
Dev.

Sharpe 
Ratio Pred Avg

Std. 
Dev.

Sharpe 
Ratio

Low (L) −0.45 0.18 5.60 0.11 −0.38 −0.29 7.02 −0.14 −0.23 −0.54 7.83 −0.24

2 −0.16 0.49 4.93 0.35 0.16 0.41 5.89 0.24 0.21 0.36 6.08 0.20

3 0.02 0.59 4.75 0.43 0.44 0.51 5.07 0.35 0.44 0.65 5.07 0.44

4 0.17 0.63 4.68 0.46 0.64 0.70 4.56 0.53 0.59 0.73 4.53 0.56

5 0.34 0.57 4.70 0.42 0.80 0.77 4.37 0.61 0.72 0.81 4.38 0.64

6 0.46 0.77 4.48 0.59 0.95 0.78 4.39 0.62 0.84 0.84 4.51 0.65

7 0.59 0.52 4.73 0.38 1.11 0.81 4.40 0.64 0.97 0.95 4.61 0.71

8 0.72 0.72 4.92 0.51 1.31 0.75 4.86 0.54 1.13 0.93 5.09 0.63

9 0.88 0.99 5.19 0.66 1.58 0.96 5.22 0.64 1.37 1.04 5.69 0.63

High (H) 1.11 1.17 5.88 0.69 2.19 1.52 6.79 0.77 1.99 1.38 6.98 0.69

H – L 1.56 0.99 4.22 0.81 2.57 1.81 5.34 1.17 2.22 1.92 5.75 1.16

NN3 NN4 NN5

Pred Avg
Std. 
Dev.

Sharpe 
Ratio Pred Avg

Std. 
Dev.

Sharpe 
Ratio Pred Avg

Std. 
Dev.

Sharpe 
Ratio

Low (L) −0.03 −0.43 7.73 −0.19 −0.12 −0.52 7.69 −0.23 −0.23 −0.51 7.69 −0.23

2 0.34 0.30 6.38 0.16 0.30 0.33 6.16 0.19 0.23 0.31 6.10 0.17

3 0.51 0.57 5.27 0.37 0.50 0.42 5.18 0.28 0.45 0.54 5.02 0.37

4 0.63 0.66 4.69 0.49 0.62 0.60 4.51 0.46 0.60 0.67 4.47 0.52

5 0.71 0.69 4.41 0.55 0.72 0.69 4.26 0.56 0.73 0.77 4.32 0.62

6 0.79 0.76 4.46 0.59 0.81 0.84 4.46 0.65 0.85 0.86 4.35 0.68

7 0.88 0.99 4.77 0.72 0.90 0.93 4.56 0.70 0.96 0.88 4.76 0.64

8 1.00 1.09 5.47 0.69 1.03 1.08 5.13 0.73 1.11 0.94 5.17 0.63

9 1.21 1.25 5.94 0.73 1.23 1.26 5.93 0.74 1.34 1.02 6.02 0.58

High (H) 1.83 1.69 7.29 0.80 1.89 1.75 7.51 0.81 1.99 1.46 7.40 0.68

H – L 1.86 2.12 6.13 1.20 2.01 2.26 5.80 1.35 2.22 1.97 5.93 1.15

Notes: OLS-3+H is ordinary least squares that preselect size, book-to-market, and momentum using Huber loss rather than the standard l2 loss. 
PLS is partial least squares. PCR ENet+H, GLM+H, RF, GBRT+H, and NN1 to NN5 are neural networks with one to five hidden layers.

Source: Gu et al. (2020).

Exhibit 7. Out-of-Sample Performance of Benchmark OLS Portfolio 
vs. Various ML Portfolios, Value Weighting (continued)
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The second consistent result is that what drives the out-
performance of ML-based prediction versus that of linear 
models is that ML algorithms not only are limited to linear 
combinations of feature sets but can formulate higher-order 
functional dependencies, such as nonlinearity and interac-
tion. To test whether higher-order effects can contribute to 
security prediction, one can compare linear machine learn-
ing models (for example, LASSO and RIDGE) with models that 
consider nonlinear and complex interaction effects (such 
as trees and neural networks). Investors at Robeco have 
found that higher-order machine learning models outper-
form their simpler linear competitors. The outperformance of 
higher-order machine learning models was also confirmed 
by academics,22 as evident from Exhibit 7.

Between nonlinearity and interactions, interactions have the 
greater impact on model performance. This also can be seen 
in Exhibit 7, where the performance of the generalized linear 
model with Huber loss (GLM+H) is inferior to those models 
that consider interaction, boosted trees, and neural networks.

Third, ML investors have found that the features that most 
determine prediction outcomes are remarkably consis-
tent regardless of the specific ML algorithms used. This 
is somewhat of a surprise because the various ML algo-
rithms, such as boosted trees and neural networks, use 
dissimilar approaches to arrive at their outcomes. However, 
the similar importance assigned to certain input features 
confirms that these are salient characteristics that drive 
cross-sectional stock returns. From Robeco’s own expe-
rience and various published studies, the characteristics 
that dominate cross-sectional returns are found to be 
short-term reversals, stock and sector return momentum, 
return volatility, and firm size.

Fourth, simple ML algorithms outperform more complicated 
ML algorithms. This result is very likely because, since there 
are not much data to train on, the simpler models, due 
to their parsimonious nature, are less likely to overfit and 
thereby perform better out of sample. We confirm this obser-
vation from Exhibit 7, where the best out-of-sample Sharpe 
ratio is achieved by a neural network with four hidden layers.

Fifth, the more data there are, the better the ML prediction 
algorithm performs. This is fundamental to the nature of ML 
algorithms, as observed by Halevy et al. (2009) for general 
machine learning applications and confirmed by Choi, Jiang, 
and Zhang (2022) in a financial context.

Predicting Stock Crashes

In this section, we discuss the example of using ML to 
predict stock crashes.

22For more discussion, see Choi, Jiang, and Zhang (2022) and Gu et al. (2020).

23This ML prediction task is studied in Swinkels and Hoogteijling (2022).

24Also called low-volatility equity, among other names.

Investment problem

Rather than predicting the rank order of future returns, 
another application for ML algorithms may simply be to pre-
dict the worst-performing stocks—that is, those most likely 
to crash.23 The results of this prediction can be applied 
in such strategies as conservative equities,24 where the 
securities most likely to crash are excluded from the 
investment universe. That is, win by not losing.

Methodology

A crash event for equities is defined as a significant drop 
in a stock’s price relative to peers; thus, it is idiosyncratic 
rather than systematic when a group of stocks or the 
market crashes. The ML prediction is set up as follows:

1. Investment universe: US, international, emerging 
market, and so on

2. ML algorithms: logistic regression, random forest, gra-
dient boosted tree, and ensemble of the three

3. Feature set: various financial distress indicators—such 
as distance to default, volatility, and market beta—in 
addition to traditional fundamental financial metrics

As one can see, the problem setup is very similar to that 
of cross-sectional stock return prediction. The main dif-
ferences are the objective function of the ML algorithm 
(ML prediction goal) and the input feature set (feature engi-
neering). Care should be taken in determining both compo-
nents to ensure the prediction algorithm solves the stated 
problem and performs well out of sample.

Results

The performance of the portfolio of stocks with the highest 
distress probability versus that of the market is shown in 
Exhibit 8. We see that the performance of the ML algorithm 
is greater than that obtained using traditional approaches 
for both developed and emerging markets.

Looking at the sector composition of the likely distressed 
stocks, shown in Exhibit 9, we see that the ML algorithm 
choices are reasonable, as technology stocks dominated 
during the bursting of the dot-com bubble in the early 
2000s and financial stocks dominated during the Global 
Financial Crisis of 2008. Overall, we see a wide sector dis-
persion for the likely distressed stocks, indicating that the 
prediction return is mostly from stock selection rather than 
sector allocation.
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Predicting Fundamental Variables

In this section, we discuss the example of using ML to pre-
dict company fundamentals.

Investment problem

Predicting stock returns is notoriously hard. As mentioned 
previously, there are potentially thousands of variables 

(dimensions) that can affect a stock’s performance—
investor sentiment, path dependency, and so on. The var-
ious factors, endogenous and exogenous, ultimately get 
translated into only a one-dimensional response—higher 
return (up) or lower return (down). An easier task may be 
to use ML algorithms to predict company fundamentals, 
such as return on assets and corporate earnings. Company 
fundamentals also have the additional beneficial character-
istic of being more stable than stock returns, making them 

Exhibit 8. Market Return vs. Return of a Portfolio Consisting of Likely 
Distressed Stocks, Estimated under Various Prediction Approaches
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Exhibit 9. Sector Composition of the ML-Predicted Likely Distressed Stocks
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better suited for ML predictions. Because of these reasons, 
company fundamentals prediction is another popular appli-
cation of ML algorithms in the financial domain. In this sec-
tion, we look at the findings from a popular study25 where 
ML algorithm-predicted earnings forecasts are compared 
with those from more traditional approaches.

Methodology

The investment universe is the US stock market, excluding 
the financial and utility sectors. The study was conducted 
over the period 1975–2019.

Six different ML models were tested: three linear ML models 
(OLS, LASSO, and ridge regression) and three nonlinear 
ML models (random forest, gradient boosting regression, 
and neural networks). Six traditional models were used 
as a benchmark to compare against ML models: random 
walk, autoregressive model, models from Hou, van Dijk, 
and Zhang (2012; HVZ) and So (2013; SO), the earnings 
persistence model, and the residual income model. Various 
ensembles of these models were also tested.

The feature set is composed of 28 major financial state-
ment line items and their first-order differences. So, there 
are 56 features in total.

Results

The results are shown in Exhibit 10. Consistent with the 
results for cross-sectional stock returns, Cao and You 
(2021) found that machine learning models give more 
accurate earnings forecasts. The linear ML models are 
more accurate than the benchmark traditional models (by 
about 6%), and the nonlinear ML models are more accurate 
than the linear ML models (by about 1%–3% on top of the 
linear model). Not only are the ML models more accurate; 
the traditional models autoregression, HVZ, SO, earnings 
persistence, and residual income were not more accurate 
than the naive random walk model. The ensemble models, 
traditional or machine learned, were more accurate than 
the individual models alone, with the order of accuracy pre-
served: ML ensemble beating traditional methods, ensem-
ble and nonlinear ML ensemble beating linear ML ensemble.

The ML models’ better performance can be attributed to the 
following:

• They are learning economically meaningful predictors 
of future earnings. One can make this conclusion by 
examining feature importance through such tools as 
Shapley value.

25For more details, see Cao and You (2021). The problem of ML company fundamentals prediction was also examined in Alberg and Lipton (2017).

26The MSCI All Country World Index (ACWI) covers stocks from 26 countries.

27Some studies have concluded that in the A-share market, retail trading volume can be up to 80% of the total. In recent years, institutional 
market trading has proportionally increased as the Chinese market matures.

• The nonlinearity and interaction effects are useful in 
further refining the accuracy of forward earnings pre-
dictions, as evidenced by the higher performance of 
nonlinear ML models compared with linear ML models.

The takeaway from this study is the same as in the previ-
ous two examples. That is, ML models can provide value 
on top of traditional models (especially due to nonlinearity 
and interaction components), and ensembling is one of the 
closest things to a free lunch in ML, much like diversifica-
tion for investing.

NLP in Multiple Languages

So far, we have discussed problems where ML algorithms 
are used for prediction. Another major category for ML 
applications is textual language reading, understanding, 
and analysis, which is called “natural language process-
ing” (NLP). Modern NLP techniques use neural networks to 
achieve the great capability improvements they have made 
in recent years. NLP is discussed in other chapters of this 
book, so we will not discuss the techniques extensively 
here, but we will discuss one NLP application that can be 
interesting for practitioners.

Investment problem

Investing is a global business, and much of the relevant 
information for security returns is written in the local lan-
guage. In general, a global portfolio may invest in 20–30 
different countries,26 while a typical investor may under-
stand only two or three languages, if that. This fact pres-
ents a problem, but fortunately, it is a problem that we can 
attempt to solve through ML algorithms.

From the perspective of Western investors, one language 
of interest is Chinese. The Chinese A-share market is 
both large and liquid. But understanding Chinese texts on 
A-share investing can be challenging because Chinese is 
not an alphabetical language and it follows very different 
grammatical constructs than English. In addition, since 
retail investors dominate the Chinese A-share market,27 
a subculture of investment slang has developed, where 
terms used are often not standard Chinese, thereby com-
pounding the problem for investors without a strong local 
language understanding.

In a paper by Chen, Lee, and Mussalli (2020), the authors 
applied ML-based NLP techniques to try to understand 
investment slang written in Mandarin Chinese by retail 
investors in online stock discussion forums. We discuss the 
results of that paper here.
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Methodology

1. Download and process investment blogs actively par-
ticipated in by Chinese A-share retail investors.

2. Apply embedding-based NLP techniques and train on 
the downloaded investment blogs.

3. Starting with standard Chinese sentiment dictionaries, 
look for words surrounding these standard Chinese 
sentiment words. By the construct of the embedding 

models, these surrounding words often have the same 
contextual meaning as the words in the standard 
sentiment dictionaries, whether they are standard 
Chinese or slang. An example of this is shown in 
Exhibit 11.

Exhibit 10. Prediction Accuracy Results from Cao and You (2021)

Mean Absolute Forecast Errors Median Absolute Forecast Errors

Average

Comparison with RW Comparison with RW

DIFF t-Stat %DIFF Average DIFF t-Stat %DIFF

Benchmark model

RW 0.0764 0.0309

Extant models

AR 0.0755 −0.0009 −2.51 −1.15% 0.0308 −0.0001 −0.22 −0.24%

HYZ 0.0743 −0.0022 −3.63 −2.82% 0.0311 0.0002 0.64 0.76%

EP 0.0742 −0.0022 −2.79 −2.85% 0.0313 0.0004 1.02 1.42%

RI 0.0741 −0.0023 −3.15 −3.07% 0.0311 0.0002 0.66 0.74%

SO 0.0870 0.0105 5.19 13.78% 0.0347 0.0039 5.50 12.56%

Linear machine learning models

OLS 0.0720 −0.0045 −5.04 −5.83% 0.0306 −0.0002 −0.60 −0.73%

LASSO 0.0716 −0.0048 −5.32 −6.31% 0.0304 −0.0004 −1.11 −1.43%

Ridge 0.0718 −0.0047 −5.19 −6.11% 0.0305 −0.0003 −0.87 −1.08%

Nonlinear machine learning models

RF 0.0698 −0.0066 −6.44 −8.64% 0.0296 −0.0012 −3.10 −3.97%

GBR 0.0697 −0.0068 −6.08 −8.86% 0.0292 −0.0016 −4.23 −5.34%

ANN 0.0713 −0.0051 −5.38 −6.67% 0.0310 0.0001 0.24 0.38%

Composite models

COMP_EXT 0.0737 −0.0027 −3.89 −3.58% 0.0311 0.0002 0.56 0.66%

COMP_LR 0.0717 −0.0047 −5.25 −6.16% 0.0305 −0.0004 −1.02 −1.33%

COMP_NL 0.0689 −0.0075 −6.99 −9.87% 0.0292 −0.0017 −3.92 −5.55%

COMP_ML 0.0693 −0.0071 −7.12 −9.35% 0.0294 −0.0015 −3.75 −4.81%

Notes: RW stands for random walk. AR is the autoregressive model. HVZ is the model from Hou et al. (2012). SO is the model from So (2013). 
EP is the earnings persistence model. RI is the residual income model. RF stands for random forests. GBR stands for gradient boost regression. 
ANN stands for artificial neural networks. COMP_EXT is an ensemble of traditional models. COMP_LR is an ensemble of linear ML models. COMP_NL 
is an ensemble of nonlinear ML models. COMP_ML is an ensemble of all ML models.

Source: Cao and You (2021).
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Results

Using this technique, we can detect investment words 
used in standard Chinese and the slang used by retail 
investors. In Exhibit 11, the red dot illustrates the Chinese 
word for “central bank.” The column on the right side of 
Exhibit 11 shows the words closest to this word, and the 
closest is the word that translates to “central mother” 
in Chinese. This is a slang word often used by Chinese 
retail investors as a substitute for the word “central bank” 
because central banks often take actions to calm down 

28In contrast to most of the world’s markets, in the Chinese stock market, gains are colored red whereas losses are colored green.

market tantrums, much like a mother does to her children 
when they have tantrums.

The embedded words also exhibit the same embedded 
word vector arithmetic made famous by the following 
example (see Mikolov, Yih, and Zweig 2013): King – Man + 
Woman ≈ Queen. For example, Exhibit 12 shows the 
following embedded Chinese word relationship: Floating 
red – Rise + Fall ≈ Floating green.28

Exhibit 11. Embedded Chinese Words from A-Share Investor Blogs Projected 
onto a 3-D Space

Source: Chen et al. (2020).

Exhibit 12. Chinese Word Embedding Still Preserves Vector Arithmetic

Source: Chen et al. (2020).
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This study illustrates that ML techniques not only are 
useful for numerical tasks of results prediction but can 
also be useful in other tasks, such as foreign language 
understanding.

Conclusion
In this chapter, we gave an overview of how ML can be 
applied in financial investing. Because there is a lot of 
excitement around the promise of ML for finance, we 
began the chapter with a discussion on how the finan-
cial market is different from other domains in which ML 
has made tremendous strides in recent years and how it 
would serve the financial ML practitioner to not get carried 
away by the hype. Applying ML to the financial market is 
different from applying ML in other domains in that the 
financial market does not have as much data, the market 
is nonstationary, the market can often behave irrationally 
because human investor emotions are often a big driver 
of market returns, and so on. Given these differences, we 
discussed several common pitfalls and potential mitiga-
tion strategies when applying machine learning to finan-
cial investing.

In the second half of the chapter, we discussed several 
recent studies that have applied ML techniques to invest-
ment problems. Common findings of these studies are 
as follows:

• ML techniques can deliver performance above and 
beyond traditional approaches if applied to the right 
problem.

• The source of ML algorithms’ outperformance includes 
the ability to consider nonlinear and interaction effects 
among the input features.

• Ensembling of ML algorithms often delivers better 
performance than what individual ML algorithms can 
achieve.

We showed that in addition to predicting numerical results, 
ML could also help investors in other tasks, such as sen-
timent analysis or foreign language understanding. Of 
course, the applications discussed here are only a small 
subset of what ML can do in the financial domain. Other 
possible tasks include data cleaning, fraud detection, 
credit scoring, and trading optimization.

Machine learning is a powerful set of tools for investors, 
and we are just at the beginning of the journey of applying 
ML to the investment domain. Like all techniques, machine 
learning is powerful only if applied to the right problems 
and if practitioners know the technique’s limits. Having said 
that, we believe one can expect to see a lot more innova-
tion and improved results coming out of this space going 
forward.
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