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This has been facilitated by the increase in computational power, which enables the deployment and use of ML 
models.1  In contrast to rule-based models, these adopt a fully data-driven approach and are capable of modelling 
complex, nonlinear relationships. They can potentially uncover systematic and repeating patterns that simple linear 
models do not capture.  

‘Certain variables might only be able to predict returns when they cross a certain 
threshold, or when they are combined with other variables, or they might only be able 
to predict negative performance’ 

For example, certain variables might only be able to predict returns when they cross a certain threshold, or when they 
are combined with other variables, or they might only be able to predict negative performance. In this white paper, we 
delve into how the use of ML techniques can propel quant modelling to the next level. We also look at a concrete 
example of how they can be used to forecast individual stock price crashes. 
 
The different uses of ML techniques in quantitative investing are increasingly being recognized in the academic 
literature. These range from relatively simple variable selection models to ones able to identify lead-lag relationships 
between the returns of different assets. ML techniques are also used in complex deep learning models for statistical 
arbitrage.2,3 Overfitting has always been a key concern for quantitative strategies. It is an even bigger issue when the 
amount of data and the number of possible relationships between variables increases.   
 
The risk here is that one can uncover a coincidental relationship between variables that has been observed in the past 
and use it as a signal to construct a portfolio, when in fact it will not repeat in the future as there is no real underlying 
phenomenon.4 The ML toolbox, however, contains solutions to avoid overfitting, such as regularization (i.e., variable 
selection), model averaging and cross-validation. 
  

 
1 See: Van Vliet, P., and Zhou, W., August 2021, “Moore’s Law is disrupting the world of quant investing”, Robeco article. 
2 For example, LASSO is a frequently used machine learning method that selects explanatory variables when many are available in a 
statistical regression model. LASSO is the abbreviation for Least Absolute Shrinkage and Selection Operator. 
3 See: Rapach, D. E., Strauss, J. K., and Zhou, G., March 2013, “International stock return predictability: what is the role of the 
United States?” Journal of Finance; and Fisher, T., and Kraus, C., October 2018, “Deep learning with long short-term memory 
networks for financial market predictions” European Journal of Operational Research. 
4 See: Martin, I., and Nagel, S., forthcoming, “Market efficiency in the age of big data” Journal of Financial Economics. 

Introduction 
Significant developments in big data and machine learning (ML) are pushing back the 
frontier of quant investing.  

https://www.robeco.com/en/insights/2021/08/moores-law-is-disrupting-the-world-of-quant-investing.html
https://onlinelibrary.wiley.com/doi/10.1111/jofi.12041
https://onlinelibrary.wiley.com/doi/10.1111/jofi.12041
https://www.sciencedirect.com/science/article/abs/pii/S0377221717310652?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0377221717310652?via%3Dihub
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3518963
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That said, detecting those firms most likely to face distress in the future is far from straightforward. While there are 
numerous characteristics that can help forecast such outcomes, they perhaps do so most effectively in a nonlinear 
fashion or in specific combinations. Fortunately, ML techniques are designed to deal with such challenges. 
 
One way to flag distressed firms is by looking at bankruptcy filings or credit downgrades.5 However, these events can 
be preceded by falling stock prices. For an equity investor, predicting a stock price decline is more relevant than 
correctly forecasting a bankruptcy filing or credit downgrade, as these events could already be priced in by the time 
they take place. Therefore, we define a crash event as a significant drop in a firm’s share price relative to those of 
other stocks. This measure captures idiosyncratic risk rather than market-wide turmoil, and we believe it lends itself 
well for use in a stock selection model instead of a market or factor-timing model used for asset allocation.  
 
Based on our definition of financial distress, Figure 1 shows that the identified distress events are not concentrated in a 
handful of sectors, but across multiple. That said, the more distressed sectors usually have a higher tally of events. 
Overall, the number of stock price crashes varies over time as cross-sectional volatility is typically higher during crisis 
periods. 
 
 
Figure  1  |  Average number of stock price crashes according to our definition of financial distress, for the period 
January 2000 to December 2020 
 

 

Source: Robeco Quantitative Research. The bars contain the average number of distress events per calendar year split by sector. 
The developed markets universe consists of the largest 3,000 stocks from the S&P Broad Market Index and MSCI World Index. 
The emerging markets universe consists of the largest 25% constituents of the S&P Emerging Broad Market Index and MSCI 
Emerging Markets Index. 

 

 
5 See: Campbell, J Y., Hilscher, J., and Szilagyi, J., November 2008, “In search of distress risk” Journal of Finance. 
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Forecasting which firms will face 
financial distress 
Avoiding investments in companies that will subsequently experience financial distress 
can help investors outperform the market. 

https://onlinelibrary.wiley.com/doi/10.1111/j.1540-6261.2008.01416.x
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If we want to identify firms that will face financial distress through the use of a ML model, we need to feed it a set of 
variables that may contain predictive information on stock price crashes. In ML terminology, these predictive variables 
are called features, while the variable that is being predicted is called the target.  
 
Selecting the set of features that serve as inputs for the algorithm that aims to find a predictive relationship with the 
target is an important modelling step for any predictive model. For our purposes, the variables we chose include 
classical financial distress indicators such as distance-to-default, volatility, and return on equity.6 But since ML models 
are designed to pick the most important features from a larger set of variables, we also decided to include more 
granular items from financial statements such as cash flow from operations as well as short and long-term debts.  
 
In our model, we only incorporate features that we believe are potentially relevant to identify firms with stock price 
crash risk. For instance, features such as the first letter of a company name or the color of its logo are not included, 
given that we are not able to link them to an economic rationale that could explain why they may be able to forecast 
crash risk. Since many company characteristics are only a snapshot at a point in time, for example profitability, we 
have also included several lagged versions for some of the features in our model. In our view, this allows the algorithm 
to identify how series of events, such as declining profitability, influence distress risk.  
 
Although most ML algorithms are designed to filter out irrelevant predictors from a large set of features, this process is 
also useful in avoiding overfitting as the number of features is reduced. We believe fewer redundant features lowers 
the chance of making investment decisions based on noisy data. Furthermore, decreasing the number of features 
speeds up the training process of the algorithm. For our application, we train three statistical models: a regularized 
logistic regression, a random forest, and an extreme gradient boosted tree.  
 
A regularized logistic regression is a method based on a classical linear regression model, but through a logistic 
transformation (where measurements on a linear scale are converted into probabilities) that is adapted to predict the 
probability of a binary outcome: in our case, whether a company is in financial distress or not. Regularization is ML 
terminology for model selection, i.e., this technique only selects those variables that help predict this binary outcome.  
 
Meanwhile, the random forest classification is a nonlinear model based on multiple decision trees – hence the term 
forest – with randomly chosen features as the nodes, where the majority vote decides the classification (determination 
of which group an observation belongs to), which in our application is a binary decision. Finally, the extreme gradient 
boosted tree algorithm is also based on decision trees, but instead of relying on majority voting, it changes the 
weighting of the features in a manner that reduces the number of false predictions.7   

‘Data leakages lead to better backtested results that cannot be achieved in practice as 
information that will be accessible in the future will obviously not be available’ 

These three prediction models are parameterized and retrained each year based on their cross-validation metrics. After 
retraining the models, we construct the signal for the upcoming year based on previously unseen data. When setting 
up this training-testing configuration, it is extremely important to ensure there are no data leakages. This refers to the 
occurrence of overfitting that happens when previously unseen data is leaked in the model training process. Data 
leakages lead to better backtested results that cannot be achieved in practice as information that will be accessible in 
the future will obviously not be available.  
 
 
 
 
 
 
 
 

 
6 Distance-to-default is the number of asset return standard deviations that a firm can handle with its equity before it will default. If 
the number is high, this means that the firm’s equity buffer is large compared to its business risk. See: Duffie, D., Saita, L., and 
Wang, K., March 2007, “Multi-period corporate default prediction with stochastic covariates”, Journal of Financial Economics. 
7 For more information on machine learning models see: Snow, D., January 2020, “Machine learning in asset management – part 
1: portfolio construction – trading strategies“, Journal of Financial Data Science; and Snow, D., April 2020, “Machine learning in 
asset management – part 2: portfolio construction – weight optimization“, Journal of Financial Data Science. 

https://www.sciencedirect.com/science/article/abs/pii/S0304405X06002029?via%3Dihub
https://jfds.pm-research.com/content/2/1/10/tab-article-info
https://jfds.pm-research.com/content/2/1/10/tab-article-info
https://jfds.pm-research.com/content/2/2/17
https://jfds.pm-research.com/content/2/2/17
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Each of these models make independent predictions, which are then combined as an ensemble prediction. In our view, 
ensembles are the only free lunch in ML, similar to what diversification is in terms of investing. Figure 2 illustrates the 
share price of a US financials stock as well as its ensemble forecasted distress risk over time. In this example, we see 
that its probability of distress increases beyond 75% post mid-2007, and eclipses 90% in the months that follow. What 
we also observe is that its stock price peaks in January 2007, but only experiences a sharp drop from March 2008 
onwards before the company files for bankruptcy in September 2008. 
 
 
Figure  2  |  Illustrative example of a stock price and its forecasted distress risk, for the period January 2002 to 
August 2008 
 

 
 

Source: Robeco Quantitative Research. This is an illustration of the forecast distress probability of a US financials stock (left-
hand-side y-axis) and its realized stock price (right-hand-side y-axis). 

 
We applied this methodology to generate financial distress probabilities for separate samples of developed and 
emerging markets stocks for the period 2000 to 2020. For comparison purposes, we also considered other distress risk 
predictors such as stock return volatility, equity market beta and distance-to-default. For each sub-sample, we formed 
20 portfolios based on the ranking of these stock price crash probabilities and calculated their respective returns in the 
following period.  
 
Figure 3 depicts the performance of the market as well as the portfolios with the highest financial distress probabilities 
for each of the four distress risk measures. In terms of developed markets, the average market return over this period 
was 10.0%. Meanwhile, the bottom portfolio for the strategy based on the ML method only delivered 2.3%. This was 
considerably lower than the gains achieved by the portfolios constructed on the highest distress predictions based on 
the other conventional variables, which ranged from 4.2% to 5.0%.  
 
We saw an even larger improvement in terms of emerging markets. The average market return was 11.6%, while the 
portfolios built on the other conventional distress predictors delivered gains between 4.5% to 7.0%. On the other 
hand, the portfolio based on the ML method generated a loss of 1.5%, thus producing a substantially better result 
than the other three alternatives.  
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Figure  3  |  Performance of developed and emerging markets portfolios with highest distress probability, for the period 
January 2000 to December 2020 
 

 

Source: MSCI, S&P and Robeco Quantitative Research. The developed markets universe consists of the largest 3,000 stocks from the 
S&P Broad Market Index and MSCI World Index. The emerging markets universe consists of the largest 25% constituents of the S&P 
Emerging Broad Market Index and MSCI Emerging Markets Index. The solid colors represent developed markets and the diagonally 
striped colors represent emerging markets. The portfolios are sorted based on historical volatility, market beta, distance-to-default and 
machine learning (plum) distress probabilities. The holding period is 1 month and the returns are annualized in USD. 

 
Figure 4 incorporates the findings from Figure 3 and illustrates the potential gains for an investor using these 
predictive methods for financial distress. Just by excluding 5% of the stocks with the highest ML-based distress 
probabilities, while keeping the remaining 95% of the universe, we saw an improvement of 33 and 66 basis points for 
developed markets and emerging markets respectively over our sample period.  
 
 
Figure  4  |  Performance of the market portfolio excluding 5% of stocks with highest distress probability, for the period 
January 2000 to December 2020 
 

 

Source: MSCI, S&P and Robeco Quantitative Research. The developed markets universe consists of the largest 3,000 stocks from the 
S&P Broad Market Index and MSCI World Index. The emerging markets universe consists of the largest 25% constituents of the S&P 
Emerging Broad Market Index and MSCI Emerging Markets Index. The solid colors represent developed markets and the diagonally 
striped colors represent emerging markets. The market returns exclude 5% of the stocks with the highest distress risk probabilities. The 
portfolios are sorted based on historical volatility, market beta, distance-to-default and machine learning (plum) distress probabilities. 
The holding period is 1 month and the returns are annualized in USD. 
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This indicates that advanced ML techniques can potentially help us to identify stocks with elevated distress risk. Put 
differently, we can potentially enhance the returns of our quantitative equity portfolios if we avoid investing in these 
stocks. 
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While we would like the ML methodology to automatically recognize the sectors that are likely to experience distress, 
we do not want it to be dominated by sector selection. In terms of our ML model, we have not placed such restrictions 
on it as we have not included sector information in its set of features. 
 
Figure 5 shows the sector distribution of this subset of stocks over time. We observed that most of the financially 
distressed stocks were found in the information technology sector in the early 2000s, then the financials sector during 
the 2008 to 2010 period, followed by the energy sector during the 2015 to 2019 interval. Although there have been 
clear tilts towards these distressed sectors over time, we did note that the identified distress events are not 
concentrated only in a few sectors. Therefore, we believe this makes our ML technique a good candidate for use within 
stock selection processes. 
 
 
Figure  5  |  Sector distribution of the portfolio with the highest distress risk, January 2002 to December 2020 
 

 
 

Source: MSCI, S&P and Robeco Quantitative Research. The developed markets universe consists of the largest 3,000 stocks from the 
S&P Broad Market Index and MSCI World Index. The emerging markets universe consists of the largest 25% constituents of the S&P 
Emerging Broad Market Index and MSCI Emerging Markets Index. The portfolio is sorted on machine learning distress probabilities and 
consists of 5% of the stocks with the highest distress risk probabilities. 
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Uncovering how ML helps to 
forecast financial distress 
To get a better understanding of how ML helps to forecast financial distress, we started 
by examining the sector breakdown of the 5% of stocks with the highest distress 
probability. 
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In our view, it is also crucial to evaluate the importance of each of the selected features, and we did so for a particular 
year in our sample period. This is indicated by the SHapley Additive exPlanations (SHAP) value.8 The SHAP value of 
each individual prediction is the average of the marginal contribution of the feature when predicting the target. This 
methodology allows us to understand the economic rationale behind our predictions. 
 
In Figure 6, we illustrate this with a stylized example, in which our predictive model consists of only three features: 
volatility, price/earnings (PE) ratio, and share turnover. Without taking any feature into account, let us say the model 
would predict the average distress probability of the training sample to be 10%. Then, with the inclusion of only 
volatility, PE ratio or share turnover information, we would see the distress probability of a stock increase to 15%, 12% 
or 11% respectively. Furthermore, we show the changes in the predicted probability when two variables are 
simultaneously included in the second row, as well as when all three features are taken into account in the bottom 
one.  
 
The average marginal contribution of each feature, or SHAP value, is calculated on the right-hand side. In this 
example, the stock’s volatility has the highest contribution at 4.5%. This consists of the average of the 5% increase 
when it is added to the baseline, the 4.5% average increase when it is added as a second feature on the next row,9 
and the 4% increase when it is added as a third variable on the bottom one. Similarly, the SHAP value for the PE ratio 
is 1.5%, while the marginal contribution of turnover is the least important with a SHAP value of 1.0%. Altogether, the 
SHAP values add up to 7% and constitute the difference between the model’s prediction of 17% versus the baseline of 
10%. Through this method, we can deconstruct the importance of each feature for each observation. 
 
 
 
Figure  6  |  Stylized example to calculate SHAP values 
 

 

Source: Robeco Quantitative Research. 

 
 

The importance of the anonymized features in our ML model is shown in Figure 7. The color of each dot indicates the 
sign and magnitude of a feature, where red signals a high feature value and blue denotes a low feature value. The 
features are ranked from top to bottom in terms of importance. For example, feature 25 is the most important and 
this is indicated by it having the largest spread in SHAP values.  
 

 
8 This measure was first introduced by Lundberg, S, M., and Lee, S., December 2017, “A unified approach to interpreting model 
predictions”, NIPS 17: Proceedings of the 31st Conference on Neural Information Processing Systems 4768–4777. 
9 Adding it to the PE ratio results in an increase of 4%, while adding it to the turnover results in an increase of 5%, leading to an 
average of 4.5%. 

https://dl.acm.org/doi/10.5555/3295222.3295230
https://dl.acm.org/doi/10.5555/3295222.3295230
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A high value for feature 25, as indicated by the red dots, leads to a large increase in financial distress probability, as 
these dots are further to the right than for any other feature. On the other hand, a low value, as highlighted by the 
blue dots, amounts to a decrease in the probability of financial distress, as the blue dots are found on the negative 
side of the scale. By contrast, the lowest values of feature 4 are furthest to the left, so these can potentially have a 
larger negative impact on the probability of distress than the low values of feature 25. The effect is nonlinear for 
feature 5 as high values have a large positive effect on the probability, while low values only have a small negative 
effect. 
 
 
Figure  7  |  SHAP values of the 20 most important features for prediction of financial distress 
 

 

Source: Robeco Quantitative Research. These are SHAP values for a specific year in our sample period. Values to the right indicate 
increases in the probability of financial distress, while values to the left indicate decreases in the probability. The red dots are high 
values of the feature, while the blue dots are low values of the feature. The features are ranked in order of importance, from top to 
bottom. Only the 20 most important features are displayed.  

 

To better understand the nonlinear and interaction effects between features and financial distress probabilities, we 
looked at partial dependence plots in Figure 8. These plots show the marginal effect of a single feature on predicted 
distress probabilities.  
 
The left-hand side chart in Figure 8 shows that a lower distance-to-default value (DtD, left on the horizontal axis) 
increases the distress probability (up on the vertical axis). The impact of DtD on distress probability accelerates for 
lower DtD , amounting to a nonlinear effect. This is a clear example of why nonlinear models are useful as the entire 
range of the cross-sectional values is not equally informative. 
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The distress probability increases faster at lower DtD than for higher DtD. This means that a single unit rise in the DtD 
barely reduces the distress probability when a stock has a high DtD (i.e., it is safe), but a single unit drop in DtD 
significantly increases the distress probability if a stock has a low DtD (i.e., it is risky).  
 
 
 
Figure  8  |  Partial dependence plot of features 
 

  

Source: Robeco Quantitative Research. The horizontal axis contains the distance-to-default (left on the horizontal axis) and interest 
expense (right on the horizontal axis) and the SHAP value (vertical axis). The added coloring dimension on the right-hand side refers to 
the distance-to-default, where high values (safe) are in red and low values (risky) in blue. 

 
The right-hand side chart in Figure 8 depicts that a high interest expense increases distress probability, but to a lesser 
extent if the DtD is elevated. The colors of the dots indicate the DtD levels. The distress probability rises by less for high 
interest paying companies if the DtD is high (safe, in red) in comparison to when the DtD is low (risky, in blue). This 
interaction effect can be viewed as the difference between safe and risky leverage, which makes sense and provides an 
economic understanding of the modelling performed by the algorithm. 
 
So far, we have shown the (possibly nonlinear) relationship between features and the probability of financial distress, 
which helps us to understand the behavior of the predictive model based on its inputs. However, it is also possible to 
dive deeper into what appeared to be a black box to explain individual distress predictions. Drilling down to the source 
data enables us to have a clear understanding of why a particular stock is or is not identified as distressed.  
 
For each observation, we can show precisely what features drive up the distress probability and which ones pull it 
down. This is depicted in Figure 9 for one specific stock in our investment universe. This example takes into account the 
January 2021 period; the firm’s overall probability of default is 0.15.  
 
For each of the relevant features, we illustrate the input value and the effect it has on the estimated probability of 
distress. The red bars contain the feature values which push up the distress probability, while the blue bars comprise 
the feature values which pull down the probability. Through the use of these visualizations, we ensure that our ML 
application is a glass box rather than a black box, and we can drill down to the source data to better understand the 
distress probability for each stock in our universe. 
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Figure  9  |  Deconstruction of the probability of distress for a specific stock in January 2021 using a force plot. 

 
 

Source: Robeco Quantitative Research. The red and blue bars indicate the features that push up or pull down the distress probability 
respectively. For this example, the overall probability of distress is 15%. 

 
As outlined in this section, we believe ML algorithms that are appropriately chosen to forecast stock price crash risk can 
indeed lead to economically interpretable results. Furthermore, ML tools are available to analyze the core of the 
predictive model such as feature importance, nonlinearities, and the interaction between features. Additionally, for 
each individual stock in our investment universe, we can dissect the source data of each feature to better understand 
the drivers of its distress probability. This can also help us to explain why a specific stock is either held or not held in our 
quantitative equity portfolios. In our view, the latter gives us more confidence that our ML model is an effective way of 
identifying stocks that will face financial distress. 
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For example, we use natural language processing techniques to interpret large volumes of news to detect sentiment, 
or to analyze corporate disclosures to determine the contribution companies may make to the United Nations 
Sustainable Development Goals. This is in addition to the ML technique used to forecast stock price crash risk as 
described in this article. We believe these tools can help us to better identify companies that will likely underperform in 
the future. Avoiding investments in such stocks can potentially enhance investment performance. 
 
In our view, new quantitative research techniques – such as ML – challenge conventional wisdom in the field of 
quantitative investing and can potentially improve investment results. In this note, we have illustrated how ML can 
help an investor to spot distressed firms prior to distress events (for example bankruptcy filings or credit downgrades) 
in both developed and emerging markets. We have assessed the added value from ML models given that they can take 
into account complexities such as nonlinearities and interactions, especially when compared to simpler conventional 
linear models.  
 
One key strength of ML algorithms is that we can feed them with economically sensible and well-behaved input 
parameters and analyze in detail whether their choices are logical over time. As we remain cognizant of the risk of 
overfitting, we make use of a cross-validation framework that we believe leads to a prudent data-driven variation in 
predictability over time. Moreover, we have the ability to scrutinize the source data which allows us to explain why a 
specific stock in our portfolio has a particular distress risk probability. In short, our ML-based distress risk prediction 
application is consistent with Robeco’s quant investment philosophy.  
 
The likelihood that future innovative research projects will uncover complex predictive relationships or lead to better 
interpretation of unstructured data is high. The drawback of financial markets data is that stock prices may be 
influenced by many known and unknown factors, while relationships between firm characteristics are complex and 
unstable over time. This makes it difficult to predict stock returns.  
 
Thus, standard statistical methods may not be able to uncover complex patterns, or complex patterns in the data can 
turn out to be random, and therefore may not be repeated in the future. Our ML application for distress prediction 
illustrates that the ML toolbox potentially contains methods to reveal true signals of future financial distress, while 
ignoring the noisy data present in asset prices and firm characteristics.  

‘When one moves from rule-based models to ML-based ones, the role of the 
researcher changes from instructor to orchestrator’ 

When one moves from rule-based models to ML-based ones, the role of the researcher changes from instructor to 
orchestrator. With the traditional approach, the researcher instructs the computer to test specific rules on input data to 
see whether they can help predict the output. In terms of ML, the researcher feeds both the input and output data to 
the computer for it to assess what the best rule is. This is referred to as supervised learning in ML terminology.  
 
This role change allows researchers to deal with more complexities. But one needs to be cautious and pay attention to 
model explainability and overfitting. Only then can the quantitative researcher stay in the driver’s seat and orchestrate 
ML processes, rather than instructing an algorithm on how to behave. 
 
Therefore, we believe ML techniques can propel quant modelling to the next level within the realms of our proven 
investment philosophy. Indeed, evidence-based research, economic rationale and prudent investing are crucial 
ingredients to make ML work in the context of investments. 

The future of ML for stock 
selection 
Several ML applications have already made their way into our stock selection models. 
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